Bringing Consistency into High Wind Measurements with Spaceborne Microwave Radiometers and Scatterometers

Thomas Meissner, Lucrezia Ricciardulli, Frank Wentz, Andrew Manaster
Remote Sensing Systems, Santa Rosa, CA

BAMS September 2017 issue
http://journals.ametsoc.org/doi/10.1175/BAMS-D-16-0052.1
in print

Photo courtesy: Seychelles Islands Development Company
Goals + Outline

- **Challenges of High Wind Measurements:**
 - Sparse ground truth.
 - Rain: Error source for most radiometers + scatterometers.
 - Sensitivity (signal) at high wind speeds.

- **Goal:** Develop concept for *inter-calibrating and validating* high wind speed measurements for various spaceborne sensors.
 - *WindSat* (radiometer 7 - 37 GHz, V + H-pol).
 - *QuikScat* (Ku-band scatterometer, VV-pol + HH-pol).
 - *ASCAT* (C-band scatterometer, VV-pol).
 - *SMAP* (L-band radiometer, V + H-pol).

- **Major validation source:** *SFMR* (NOAA HRD).

- **Key technique:** *Utilize strengths of each instrument* where appropriate:
 - Sensitivity to wind speed ranges.
 - (Non-) degradation in rain.
Low - Moderate Wind Speeds
Buoys Ground Truth Below 15 m/s

QuikScat (Ku 2011) – BUOYS
bias: -0.03 m/s
sdev: 0.87 m/s

RSS WindSat (V7) – BUOYS
bias: -0.14 m/s
sdev: 0.95 m/s

RSS ASCAT (V2.1) – BUOYS
bias: -0.01 m/s
sdev: 1.11 m/s

- Excellent correlation between satellite (QuikScat, WindSat, RSS ASCAT) and buoy wind speeds below 15 m/s.
- Buoys observations are sparse and unreliable above 15 m/s (high waves, tipping over, ...).
- NWP (ECMWF, NCEP) are not reliable in very high winds (> 20 m/s).
L-Band Radiometers

SMAP (Soil Moisture Active Passive) + SMOS

- First results were presented at IOVWST 2016 + Exeter workshop.
- L-band radiometer wind response does not saturate even at very high winds.
- L-band radiometer is *unaffected by precipitation* (< 25 mm h⁻¹).
- Extended to study of intense TC in 2015 + 2016 including intensity and wind radii.
- We started to create *microwave database of SMAP* maximum sustained winds and wind radii for NOAA and NRL.

Wind response =

Wind induced (excess) emissivity

\[
\Delta T_B = T_{B \text{ rough}} - T_{B \text{ flat}}
\]

<table>
<thead>
<tr>
<th>V-pol GMF</th>
<th>H-pol GMF</th>
<th>V-pol data</th>
<th>H-pol data</th>
</tr>
</thead>
</table>

Wind response vs. Wind speed (m/s)
Main Validation Source for High Winds

Stepped Frequency Microwave Radiometer SFMR

SFMR has **not** been used in deriving GMF. Provides independent source for validation for satellites that can see through rain (SMAP, ASCAT).

Data provided by NOAA AOML HRD. Reprocessed release.

Satellite – SFMR Match-Ups

requires careful editing of each storm

- SFMR observations (3 km resolution) need to be resampled along-track to satellite resolution (25 – 40 km).
- **Need to limit intensity changes.**
 - Time match < 5 hours.
 - Use Best Track data to limit intensity change.
- **Shift in location.**
- Avoid eye/eyewall (discussion at Exeter High Winds Workshop)
- Need sufficient number of match-ups, not only one or two flights.
- Assessment possible within **uncertainty limits** (about 3 m/s).

SFMR correlate well with dropsonde wind speeds.

![Graph showing correlation between W dropsonde [m/s] and W SFMR [m/s]](chart)

- $n = 2713$
- $y = 0.98x + 0.73$
- $r^2 = 0.92$
- rmse = 3.9 m s$^{-1}$
SMAP/ASCAT vs resampled SFMR Match-Ups for 2015 + 2016

- Very good correlation + agreement between SMAP and resampled SFMR over whole wind speed range up to 70 m/s.
- No degradation in rain.
- L-band radiometer signal does not saturate at high winds.

Very good correlation + agreement between RSS ASCAT and resampled SFMR below 30 m/s.

Very poor - no correlation above 35 m/s. C-band VV-pol scatterometer signal saturates. Cannot be cured by scaling/adjusting GMF.
SMAP/ASCAT in TC Fantala
strongest observed cyclone in Indian Ocean (Seychelles)

<table>
<thead>
<tr>
<th></th>
<th>Max wind</th>
<th>33 m/s Rad</th>
</tr>
</thead>
<tbody>
<tr>
<td>SMAP</td>
<td>70 m/s</td>
<td>55 km</td>
</tr>
<tr>
<td>ASCAT</td>
<td>35 m/s</td>
<td>10 km</td>
</tr>
<tr>
<td>Best Track</td>
<td>69 m/s</td>
<td>63 km</td>
</tr>
</tbody>
</table>

April 17, 2016.
Estimated max. 10-min sustained winds: 69 m/s.
Almost **perfect line-up** of QuikScat (Ku 2011), SMAP and WindSat up to 40 m/s.
- Expect little changes in updated Ku-band scatterometer GMF at high winds.

- SMAP has a small positive constant bias (+ 1 m/s) compared to WindSat up to 40 m/s.
- RSS ASCAT has small negative (- 1 m/s) bias compared to WindSat. Bias increases at high winds (saturation).

- **Demonstrates consistency** between RSS radiometer and scatterometer winds in extratropical cyclones (rain free).
Intra-Satellite Consistency Calibration + Validation: Overview

- **WindSat**: Consistency - No Rain < 40 m/s
- **SMAP**: Consistency - No Rain < 40 m/s
- **ASCAT RSS V2.1**: Consistency - No Rain < 30 m/s

- **QuikScat Ku 2011**: Validated - Rain/No Rain All wind speeds (< 70 m/s)
- **GMF**: Consistency - No Rain < 40 m/s
- **Drop Sondes**: Validated - Rain/No Rain < 30 m/s
SMAP – WindSat: The Ideal Couple

Same ascending node time. Mutual benefit.

Extratropical cyclones. No rain. Develop SMAP GMF.

Tropical cyclones. Heavy rain. Train WindSat All-Weather Algorithm with SMAP Wind Speeds.

Drop Sondes

Validated Rain/No Rain All wind speeds (< 70 m/s)
WindSat Wind Speeds in Rain

Training: PATRICIA Testing: JIMENA

- Current RSS WindSat all-weather algorithm had been trained up to 40 m/s.
- Train WindSat in rain retrieval algorithm with SMAP winds.
- Statistical algorithm.
 - Different from standard physical WindSat wind speed retrieval algorithm.
- Combine WindSat C-band and X-band channels to take out rain (SFMR-like).

\[
W_{\text{reg}} = c_0 + c_1 \cdot T_B^{C\text{-band}} + c_2 \cdot T_B^{X\text{-band}} + \ldots
\]

WindSat TB

linear regression

SMAP wind speed
Summary + Outlook

- **SMAP** wind speeds validated with **SFMR**.
 - Range: 15 m/s to at least 70 m/s. No saturation.
 - Not affected in precipitation, even in heavy rain.
 - Very valuable spaceborne sensor for assessing intensity and size of TC.
 - Cal/Val source for CYGNSS at high winds.

- **RSS ASCAT** winds validated with **SFMR**.
 - Agree very well below 30 m/s.
 - Demonstrate sensitivity loss and saturation of ASCAT wind speed response.

- Very good consistency between RSS radiometer (**WindSat, SMAP**) and scatterometer (**QuikScat, ASCAT**) in extratropical cyclones.
 - Particular: **QuikScat / WindSat agreement** to 40 m/s (no rain).
 - Need careful rain filter and go through many storms.

- First results indicate capability to train **WindSat** winds in rain (C/X-band channels) using **SMAP**.
 - Up to TC with intensity 4 – 5.
 - Can be extended to other C/X-band radiometers (**AMSR-E, AMSR2**).
Backup Slides
Greenland Flow Distortion Experiment

Up to 25 m/s

- Aircraft observations during Feb + Mar 2007.
- 150 measurements during 5 missions.
- Wind vectors measured by turbulence probe.
- Adjusted to 10m above surface.
- Contamination from land and sea ice. Makes satellite wind speeds systematically high. Radiometer most affected.
WindSat Wind Speeds in Rain

Use SMAP wind speeds as "truth"

- Current RSS WindSat all-weather algorithm had been trained up to 40 m/s.
- Train WindSat in rain retrieval algorithm with SMAP winds.
- Statistical algorithm.
 - Different from standard physical WindSat wind speed retrieval algorithm.
- Combine WindSat C-band and X-band channels to take out rain (SFMR-like).

\[W_{reg} = c_0 + c_1 \cdot T_B^{C\text{-band}} + c_2 \cdot T_B^{X\text{-band}} + K \]

\[\frac{c_1}{c_2} \approx -\frac{5}{2} \]

T. Meissner + F. Wentz
IEEE TGRS, 47(9), 3065 – 3083, 2009