

IOVWST Meeting La Jolla, CA 2-4 May 2017

* With help from numerous colleagues

5	7			П			. •				
ı	10	tr.	$\mathbf{\alpha}$	d	11	1	1	On			
ı		u	W	u	u	U	ш	on			

History of GMFs that link backscatter to ENW for various Satellites

Relationship between Equivalent Neutral Winds and Stress

Equivalent Neutral Winds

Density effects

Role of surface currents

Role of stratification & Gustiness

Drag Coefficient

Semi-Empirical Formulations of neutral drag coefficient

Role of surface roughness

Smooth flow & capillary waves (SST effect on viscosity, surface tension)

Wind-wave parameterizations

Large scale waves and sea-state effects

Using wave measurements to produce a sea-state/wave-age dependent Charnock parameter.

Using a surrogate such as a wind-speed dependent Charnock parameter.

Parameterizations to be tested

Stress measurement and comparison

Direct covariance data description

Comparison of flux parameterizations using buoy data

Comparisons using QuikScat and ASCAT equivalent neutral winds

MBL/CBLAST/CLIMODE Drag Coefficients

Long time series data sets are found at: http://tds-opal.sr.unh.edu/thredds/catalog/opal_ts/opal_asflux/catalog.html

Future Plans: NASA SPURS, NSF's OOI & NOAA TPOS

5	7			П			. •				
ı	10	tr.	$\mathbf{\alpha}$	d	11	1	1	On			
ı		u	W	u	u	U	ш	on			

History of GMFs that link backscatter to ENW for various Satellites

Relationship between Equivalent Neutral Winds and Stress

Equivalent Neutral Winds

Density effects

Role of surface currents

Role of stratification & Gustiness

Drag Coefficient

Semi-Empirical Formulations of neutral drag coefficient

Role of surface roughness

Smooth flow & capillary waves (SST effect on viscosity, surface tension)

Wind-wave parameterizations

Large scale waves and sea-state effects

Using wave measurements to produce a sea-state/wave-age dependent Charnock parameter.

Using a surrogate such as a wind-speed dependent Charnock parameter.

Parameterizations to be tested

Stress measurement and comparison

Direct covariance data description

Comparison of flux parameterizations using buoy data

Comparisons using QuikScat and ASCAT equivalent neutral winds

5	7			П			. •				
ı	10	tr.	$\mathbf{\alpha}$	d	11	1	1	On			
ı		u	W	u	u	U	ш	on			

History of GMFs that link backscatter to ENW for various Satellites

Relationship between Equivalent Neutral Winds and Stress

Equivalent Neutral Winds

Density effects

Role of surface currents

Role of stratification & Gustiness

Drag Coefficient

Semi-Empirical Formulations of neutral drag coefficient

Role of surface roughness

Smooth flow & capillary waves (SST effect on viscosity, surface tension)

Wind-wave parameterizations

Large scale waves and sea-state effects

Using wave measurements to produce a sea-state/wave-age dependent Charnock parameter.

Using a surrogate such as a wind-speed dependent Charnock parameter.

Parameterizations to be tested

Stress measurement and comparison

Direct covariance data description

Comparison of flux parameterizations using buoy data

Comparisons using QuikScat and ASCAT equivalent neutral winds

5	Intro						1 .									
ı	E	n	ď	8	r	\circ		Б	Т	17	1 1	н	1	\cap	1	١
ı	ı		l	IJ	u	U	U	L	u	U		L,	ı	U	"	П

History of GMFs that link backscatter to ENW for various Satellites

Relationship between Equivalent Neutral Winds and Stress

Equivalent Neutral Winds

Density effects

Role of surface currents

Role of stratification & Gustiness

Drag Coefficient

Semi-Empirical Formulations of neutral drag coefficient

Role of surface roughness

Smooth flow & capillary waves (SST effect on viscosity, surface tension)

Wind-wave parameterizations

Large scale waves and sea-state effects

Using wave measurements to produce a sea-state/wave-age dependent Charnock parameter.

Using a surrogate such as a wind-speed dependent Charnock parameter.

Parameterizations to be tested

Stress measurement and comparison

Direct covariance data description

Comparison of flux parameterizations using buoy data

Comparisons using QuikScat and ASCAT equivalent neutral winds

Quick Survey of Stress Products

Product name	Org	Sensor	Time Span	Time Res.	Spatial Res	Variables	Cd and z/L	References
SCOW	OSU	Qscat	1999-2009	monthly	25 km	u,v,τx,τy, τ ,	Large,1994	Risien Chelton 2008
Cersat daily turb. flux V3	Ifremer	Qscat	1999-2009	daily	0.25°	τx , τy , $ \tau $	Coare3	Bentamy et al 2013
Qscat/NCEP Blend V5	CRA/NRA	QSCAT+NCEP	1999-2009		0.5°			Milliff et al., 2004
Pseudostress	coaps	Nscat	96-97	daily	1°	$ \tau $, τ_dir	Bourassa	Weissman and Graber 1999
Pseudostress	coaps	QScat	1999-2009	daily	1°	τ ,τ_dir	Bourassa	Pegion et al., 2000
SAF wind stress	KNMI	ERS1-2	1992-2001	6 hourly	0.5°			
CCMP - pseudostress	RSS (GSFC in past)	Satellite blend + ERA Int		6 hourly	0.25°			Atlas et al., 2011
J-OFURO3	SMST	Blend Passive, ERS, Oscat, ASCAT, QScat	1988-2013	daily	0.25°		Fairall et al. 1996, LKB	Kutsuwada et al., 2016-7
West Coast Reg. wind stress	OSU	Qscat	1999-2009		0.1°	See podaac		Vanhoff, Risien, Strub, 2011
Sea surf. wind stress	NOAA/NCDC	Blend	1987-2011	6 hourly, monthly	0.25°	τχ,τγ		Zhang et al., 2006
IFR L3 flux	Ifremer	ERS1,2	91-96, 1996-2001	weekly, monthly	1°	See podaac		Also for NSCAT

Sensitivity to Parameterizations

Sensitivity to Parameterizations

Discussion Topics

- Is there interest and are we ready to produce a Synthesis Paper on "Surface Stress and Scatterometry" to summarize our recent work? Topics could include:
 - Role of surface currents and the relative wind
 - Role of atmospheric stability and the equivalent neutral wind
 - Role of air density
 - Role of "long" surface waves on surface stress
 - Role of surface variability and gustiness
 - Role of SST and viscosity
 - Impact of SST gradients
 - Recommendation for drag coefficients
- Can the Coastal Working Group provide any guidance on specific phenomena they'd like to revisit including wave age, wave steepness, enhanced breaking, shallow-water waves, wind-wave directional differences, & fetch limited seas.
- How do we move forward in our attempts to combine scatterometers and observations to improve estimates of wind speed and stress at extreme winds (> 25 m/s)?
- Is there any desire to work on a GMF that directly relates stress measurements with backscatter? The stress measurements could include both DC and bulk derived measurements using our recommended algorithm.