Monsoon IntraSeasonal Oscillation (MISO) in the Bay of Bengal: Effect of mixed layer and barrier layer on SST and convection

> Weiqing Han Department of Atmospheric and Oceanic Sciences The University of Colorado at Boulder

Li Y., W. Han, and coauthors, 2017: J. Geophys. Res.

IOVWST meeting, UCSD, May 2-4, 2017

1. Background

Goal

Modeling studies: MISOs (i.e. summertime MJO)

- mainly atmospheric internal variability;

-air-sea interaction over Indian Ocean, however, is crucial for simulating/predicting MISO northward propagation (Goswami 2012, review);

Processes that determine air-sea interaction: not well understood.

The goal of this research:

Explore the influence of mixed layer depth (MLD) and barrier layer thickness (BLT) over the Bay of Bengal on sea surface temperature (SST) and precipitation variability of the MISO.

2. Approach

Combine observational analysis with OGCM experiments:

- a) Analyze satellite observed winds + precipitation to identify the MISO events;
- b) Perform OGCM Experiments (using HYCOM) to isolate forcing/ process that determine instraseasonal SSTa;
- c) Examine the feedback of the ocean to MISO convection.

Main Run (2000-2014): complete solution - simulates OBS

Forcing fields: daily CCMP V1.1 (2000-2011) & ASCAT wind 2012-2014; CERES SWR & LWR; TRMM Multiple satellite precipitation; ERAI Tair and Specific humidity.

No instraseasonal wind stress run: Remove MISO wind stress-related oceanic processes (oceanic processes: upwelling, entrainment, advection);

No wind speed run: remove MISO-related (Qsen + Qlat);

No Short Wave Radiation run: Remove MISO (SWR effect).

3. Observed and simulated SST (May-Oct)

Obs/Model difference: (1) Skin vs bulk SST;(2) Model: daily forcing: no diurnal cycle (~20% winter MJO in Thermocline Ridge region)

Observed/simulated MLD & BLT: 2005-2014 avg

Mixed layer depth (MLD); Isothermal layer depth (ILD); Barrier layer thickness (BLT): (ILD – MLD) (see Lukas and Lindstrom, 1991)

HYCOM well simulates mean & intraseasonal SST, MLD, BLT and Thermocline depth (Z23) – suitable for our present study

4. Air-Sea Interaction: (a) processes controlling intraseasonal SST variability: 45 MISO events composite from May-Oct

MR: complete run by daily forcing (2001-2014)

NoTAU: remove intraseasonal wind stress (**ocean processes: ent, upw & adv**) **NoSWR:** remove (**shortwave radiation**)

NoWSP: remove intraseasonal wind speed (turbulent heat fluxes: Qsen+Qlat)

Air-sea interaction: (b) Impact of MLD and BLT on MISO SSTa and rainfall: 50 40 (b) (a) (C) 45 35 35 Thin BLT group 40 30 30 (<17m, 14events) 25 25 35 E 35 0 30 W 25 BLT [m] BLT [m] Thick BLT group 20 20 (>17m, 15) 15 25 15 Thick MLD group 20 10 10 (>35m, 16) 15 5 5 10 May Jun Jul Aug Sep Oct May Jun Jul Aug Sep Oct 15 20 25 30 35 40 45 50 10 Month Month MLD [m] 0.1 0.6 0.04 (e) ENT (a) SST (c) SHF 0.5 0.08 0.03 0.4 0.06 $c_p \rho_0 H$ 0.3 0.02 0.04 0.2 0.01 0.1 0.02 õ C 0 0 -0.1 -0.02-0.2-0.01-0.3-0.04 -0.02-0.4Both MLD and BLT -0.06**Big difference** -0.5-0.03 MLD affects SHF affects ENT -0.08-0.610 15 20 25 -25-20-15-10-5 5 -0.04-0.1-25-20-15-10-5 5 10 15 20 25 0 5 10 15 20 25 -25-20-15-10-5 0

SST: Small BLT > Large BLT > Large MLD

(b) Impact of MLD and BLT on MISO SST and rainfall

May-mid June

Unique features of the double-small 8 events: May-June

Rainfall and SST anomalies are amplified under double-small condition MLD<31m; BLT<10m

Thin MLD&BLT condition: intense but short break

Other: weak but prolonged break

5. Summary

- Due to the thick barrier layer, intraseasonal SSTa over the Bay of Bengnal is primarily controlled by surface heat flux forcing;
- During May-June monsoon developing stage, the thin MLD and BLT over the Bay amplify intraseasonal SSTa amplitude, causing short-intense monsoon break in MISO convection compared to weak-prolonged break of the thick MLD and BLT cases;
- The strong wind & rainfall associated with the short-intense monsoon break (MISO dry phase) have large impact on different regions of India and Southeast Asia.

Observed and simulated MLD, BLT & thermocline depth

Mixed layer depth (MLD): depth at where density increase equivalent to 0.5C temperature decrease; Isothermo layer depth (ILD): depth at where T decreases by 0.5C; Barrier layer thickness (BLT): *ILD - MLD*

HYCOM well simulates mean & intraseasonal SST, MLD, BLT and Z23 – suitable for our present study

Unique features of the 8 double-thin events

Rainfall and SST anomalies are amplified under double-small condition MLD<31m; BLT<10m

Impact of ISM freshwater flux on intraseasonal SST

MR: complete run by daily forcing (2001-2011) **NoISMR:** keep rainfall/river to the JFM climatology

$$\text{SHF} = \frac{Q}{c_p \rho_0 H} \qquad \qquad Q = Q_{\text{net}} - Q_{\text{pen}}$$

 $ADV = -[\mathbf{u} \cdot \nabla T]$

$$\text{ENT} = -\frac{[T] - T_{-H}}{H} \times (w_{-H} + \frac{\partial H}{\partial t} + \mathbf{u}_{-H} \cdot \nabla H)$$

$$\mathbf{ENT} = -\frac{[T] - T_{-H}}{H} \times W_{e+u}$$