

Evaluating and Comparing SeaWinds Backscatter Image Formation Algorithms

3 May 2017

David G. Long Brigham Young University

D.G. Long, Comparison of SeaWinds Backscatter Imaging Algorithms, *IEEE Journal of Selected Topics in Applied Earth Observations*, to appear, Vol. 10, No. 3, doi:10.1109/JSTARS.2016.2626966, 2016.

Scatterometer Climate Record Pathfinder www.scp.byu.edu

SeaWinds Sigma-0 Image Formation

- Primarily used for land/ice applications
 - Tradeoff between noise and resolution
- Conventional imaging: "drop-in-bucket" DIB
 - Average measurements whose center fall within 25 km grid
- Fine resolution DIB (fDIB) (aka 'dense sampling method')
 - DIB with smaller pixel size
- Reconstruction: SIR (or AVE=first iteration of SIR)
 - Signal reconstruction on fine resolution grid
- Also considered Backus-Gilbert (BG)

Egg image examples

SeaWinds Sampling

Orbit

Outer Scan

Combining multiple passes increases sampling density to improve resolution and effective SNR

Inner Scan Nadir Track Inner Swath 1400 km Outer Swath 1800 km

Measurement Spatial -100 **Response Function**

-50

(rotation diameter not to scale)

50

Sampling Density and Reconstruction₁₅₀

- ~3 km "delta-dense" sampling achieved
 - Within a few days for eggs
 - Within a few passes for slices

Simulation & Actual Results

For simulation, actual SRFs and sample locations used w/Monte Carlo noise

For real data, similar resolution enhancement and performance relative to DIB observed

image examples Egg

Slice image examples

h) slice qSIR

SIR Noise and Resolution Tradeoffs

11

SIR enables tradeoff between noise and signal reconstruction by selection of the number of iterations used to create image

Backus Gilbert

Least-squares method explicit noise/resolution trade parameter gamma

BG with optimum gamma not as good as SIR

Derived Image Pixel Response Functions

- Green box = 22.5 km DIB pixel
- Blue square = 2.25 km fine resolution pixel
- Evaluated analytically or via simulation
- SIR achieves finest resolution with best regularity

Derived Image Pixel Response Functions

Image Frequency Response

Use simulation w/ actual sampling, and SRF to estimate frequency response of DIB, AVE, SIR compared to true

DIB vs SIR Comparison 4 day Images

Ku-band (QuikSCAT)

fDIB vs SIR Comparison 4 day Images

Ku-band (QuikSCAT)

Iceberg Movement Before/After

Ku-band (QuikSCAT)

IGHAM YOUNG UNIVER

DIB vs SIR Comparison 30 day Images

Ku-band (QuikSCAT)

DIB vs SIR Comparison 30 day Images

Ku-band (QuikSCAT)

Other observations

BRICHAM YOUNG UNVERSITY

- Change (motion) during averaging interval nicely handled by SIR
- Fine (over-sampled) DIB (fDIB) can yield high resolution *only* if stationary
 - surface and long integration time
 - Noisiest of the techniques
- dB vs linear space averaging
 - Both effective
 - Geometric average is less "noisy" when noise is multiplicative and is thus the preferred method

Summary

- Multiple scatterometer imaging algorithms have been compared for SeaWinds to better understand strengths and weaknesses
- Lowest noise: conventional DIB -- lowest resolution
- Highest resolution: SIR -- only slightly higher niose level
- SIR handles motion well
- Averaging in dB less sensitive to noise than linear average

D.G. Long, Comparison of SeaWinds Backscatter Imaging Algorithms, *IEEE Journal of Selected Topics in Applied Earth Observations*, to appear, Vol. 10, No. 3, doi:10.1109/JSTARS.2016.2626966, 2016.

Scatterometer Climate Record Pathfinder www.scp.byu.edu

OSCAT-2 2015

OSCAT-1 2013

OSCAT-2 Scatterometer 2016 JD 300 (oush sir)

Scatterometer 300 (oush sir)