

R&D Satellite Observation

CFOSAT and WindRad simulation

IOVWST Meeting Zhen Li, Ad Stoffelen 02-05-2017

Outline

- CFOSAT Rotating Fan-beam concept
- FY-3E WindRad dual frequency Ku/C-band
- L1B simulation result
- Beam Weighting method
- Trade-off choice
- CFOSAT-WindRad comparison

CFOSAT-RFSCAT concept

Rotating Fan Beam

WindRad-RFSCAT concept

R&D Satellite Observation

WindRad

Parameters Comparison between CFOSAT and WindRad

Specification	Value	Specification	Value
Frequency	Ku band	Frequency	Ku and C band
Bandwidth	0.5 MHz	Bandwidth	0.6 MHz
Polarization	VV and HH	Polarization	VV and HH
Swath width	1000 km	Swath width	1400 km
Orbit height	514 km	Orbit height	836km
Incidence angles	25 – 47.6 degree	Incidence angles	34.9 – 44.9 degree
Rotation rate	3.5 rpm	Rotation rate	3.03 rpm
Transmit power at HPA	120 W	Transmit power at HPA	120 W (ku band) 100 W (C band)
Pulse repetition frequency (PRF)	75 Hz	Pulse repetition frequency (PRF)	104 Hz (Ku band) 208 Hz (C band)

WindRad

L1B simulator

RFSCAT end to end simulator

RFSCAT simulator developed by Jos de Kloe

L1B simulator

2500 2000 1500 Along track position [km] 1000 -500 -1000 L 200 400 1000 1200 1400 1600 600 800

Cross track position [km]

L1B simulation illustration

Content of L1B data

Belmonte et al., 2009

Number of views on the WVCs

CFOSAT

WindRad (C-band, ku-band)

Incidence and azimuth angle distribution CFOSAT

WindRad

Kp instrument noise distribution

Wind retrieval result with constant wind speed and random wind direction over all the WVCs

Wind speed = 8 m/s

CFOSAT

Wind retrieval results-WindRad

R&D Satellite Observation

Wind direction closest result

Wind direction first rank result

Wind speed = 8 m/s

WindRad

Koninklijk Nederlands

Meteorologisch Instituut

Ministerie van Infrastructuur en Milieu

Beam weighting method

Beam weighting method

- Commonly used MLE has the assumptions: measurement errors are uncorrelated; their errors are Gaussian; The priori probability $P(\sigma_s^o)$ is constant. The last one is problematic if sensitivity depends on azimuth.
- Z-space transform has been applied on ERS and makes true the assumption of constant $P(\sigma_s^o)$ (Stoffelen and Anderson, 1997).
- The shape of GMF solution manifold in measurement space is related to the system wind direction sensitivity, and when this sensitivity is uniform, realistic and precise wind direction distributions are retrieved.
- RFSCAT has more than three beams (views), which the transformation could not be derived straightforwardly through visualization of the 3-D measurement space.
- A more generic beam weighting method was applied on ERS and SeaWinds scatterometer. Scaling in the inversion step to get uniform total wind sensitivity (Stoffelen and Portabella, 2006) in order to reduce (un)popular wind directions.

Beam weighting method

Adapt Beam Weighting Method to RFSCAT

Koninklijk Nederlands

Meteorologisch Instituut

Ministerie van Infrastructuur en Milieu

19

Adaptation of Beam Weighting Method to RFSCAT

Beam weighting method

The change of cost function

$$\sigma_{i} \circ = a \times \sigma_{i} \circ = \sum_{i=1}^{N} \left(\frac{\partial \sigma^{o'}}{\partial \phi} \right)^{2} \approx \text{constant}$$

$$J = \frac{1}{M} \sum_{j=1}^{M} \left[\sum_{i=1}^{N} \left(a_{i} \cdot \frac{\partial \sigma^{o}_{i}}{\partial \phi} \right)^{2} - \text{Mean} \right]^{2} \qquad \text{Mean} = \frac{1}{M} \sum_{j=1}^{M} \sum_{i=1}^{N} \left(\frac{\partial \sigma^{o}_{i}}{\partial \phi} \right)^{2}$$

$$J_2 = \sum_{j=1}^{M} \sum_{i=1}^{N} \{a_i^2 \cdot \left[\left(\frac{\partial \sigma_i}{\partial \varphi_{i,j+1}} \right)^2 - \left(\frac{\partial \sigma_i}{\partial \varphi_{i,j}} \right)^2 \right] \}^2$$

 $J_new = J + J_2$

✓ Reduce sensitivity gradients

v (m/s)

Koninklijk Nederlands Meteorologisch Instituut Ministerie van Infrastructuur en Milieu

Definition of the FoM (Figure of Merit) Wind vector RMS error:

It quantifies the total wind retrieval error after ambiguity removal and should be as low as possible

$$FoM = \sqrt{\int |v_{out} - v_{in}|^2 \cdot P_{obs} \cdot P_{NWP}(v_{out}|v_{in}) d^2 v_{out} / 2\sigma^2}$$

Belmonte et al., 2009
Ambiguities
Prior knowledge
$$\int \frac{10}{20} \int \frac{10}{10} \int \frac{10}{20} \int \frac{10}{10} \int \frac{10}{20} \int \frac{10}{10} \int \frac{10}{10} \int \frac{10}{20} \int \frac{10}{10} \int \frac{10}{10} \int \frac{10}{20} \int \frac{10}{10} \int \frac{10}{1$$

R&D Satellite Observation

Summary

- RFSCAT concept gives large swath coverage and significantly improve the wind retrieval quality at the sweet swath.
- Beam Weighting method has been adapted to RFSCAT, it gives similar quality at the sweet swath comparing to the kp normalization with sigma0 simulated, but it also worsens the nadir and outer swath as expected.
- CFOSAT has up to 16 views at sweet swath and shows the ability of good quality retrieval. Near nadir still similar FoM to ASCAT.
- WindRad has double number of views comparing to CFOSAT and its sweet swath (1st rank solution) gives excellent result.

Thank you for your attention.