Water Cycle Observation Mission (WCOM) and Its Potentials for Ocean Surface Wind Vector Measurement

Xiaolong DONG

CAS Key Laboratory of Microwave Remote Sensing National Space Science Center Chinese Academy of Sciences (MiRS, NSSC, CAS) <u>dongxiaolong@nssc.ac.cn</u>

Jiancheng SHI

State Key Laboratory of Remote Sensing Science Institute of Remote Sensing and Digital Earth Chinese Academy of Sciences (SKLRSS, RADI, CAS) <u>shijc@radi.ac.cn</u>

WCOM: Briefs

- Science mission supported by the Strategic Priority Project on Space Space of Chinese Academy of Sciences
- Jointly proposed by State key Laboratory of Remote Sensing Science (SKLRSS) in the Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences (RADI, CAS) and MiRS in NSSC, CAS
- ■Co-PIs: JC Shi, XL Dong
- ■2013: selected as one of 8 candidate science missions to be implemented in the 13th five-year-plan (2016-2020)
- ■2014: mission definition-science objectives and mission design, payload configuration and design
- ■2015-2016: intensive pre-study: mission design, development and verification of key enabling technologies

- Objectives and mission concept
- Payload configurations and mission design
- Potentials for ocean surface wind vector measurement
- Future development and implementation plan

Scientific Significance of Water Cycle

Roles of water in earth system:

- Phase changing affects energy cycle 1)
- 2) Major carrier and forces of mass cycles

Energy cycle

Vital role for ecology system 3)

Water cycle global and regional distribution changes

changes of landscapes, ecosystems and human activities and also affect interiority of the earth

Application Significance of Water Cycle

Basic requirements for monitoring and prediction of water resource, flood, drought, agricultures

1998 flood event in China

2010 drought monitoring in South West China

Observations and Modeling of Water Cycle

To support model improvement requires:

Accurate measurements of water cycle components and synergetic balanced observations of water cycle system

Capability of Model Prediction

Large uncertainties exists in the model Simulations on Water Cycle

Comparison of Regional Climatic Models in Intergovernmental Panel on Climate Change (IPCC) AR4

N America SE Asia Sahel S Europe

1

0

-1

-3

Model Simulations with the Same **Driving Data**

Problems in Modeling & Observation

Grids in prediction model represents average status and physical processes at a given scale in water cycle

e.g.: soil moisture at 25 km resolution

Great uncertainties in the parameterization of prediction model

1. In situ observations – point and sparse

- 2. Point observations at different scale with prediction model
- 3. Needs for spatial and temporal observations

→ Satellite Observations

Characteristics of the Spatial-Temporal Variabilities of Water Cycle Components

Hydro-climatology 50-100km, Hydro-meteorology 4-15km resolution

Strong Temporal Variability	Water Cycle	Temporal	Ideal Spatial	Minimum Dequivement	Observation
Precipitation	Parameters Precip/vapor	1-2hour	1km	25km	1 mm hr-1
VaporOcean	Sea Evap.	1-2hour	10km	25km	15 W m-2
Evaporation	Soil moisture	2-3day	100m-1km	50km	0.04 m ³ /m ³
Strong Spatial Variability	Sea salinity	10-30day	10km	100km	0.1-0.2 psu
•Freeze/Thaw	FT	2-3day	100m-1km	50km	10-20 %
•Snow Water	SWE	2-3day	100m-1km	50km	10 %
Equivalent	Water body	3-7day	30m	1km	1000 m2
Weak Variability	Ground water	1month	50km	300km	~
•Sea Surface	Land ET	1-2hour	30m-1km	5km	30 W m-2
Salinity	Run-off	1-2hour	~	~	~
•Polar Ice					1556

Available Observation Capability for Water Cycle

	Sensor	Frequency(GHz)	vapor	Preci	Тетр	SM	Freeze Thaw	Snow	SSS	OSW
Multiple Frequency Sensor	Aqua /AMSR-E	6.925;10.65;18.7;23.8;36. 5;89	V	v	v	V	v	٧		V
	GCOM /AMSR2	6.9;7.3;10.65;18.7;23.8;3 6.5;89	v	V	V	v	v	٧		v
	FY-3 /MWRI	10.65;18.7;23.8;36.5;89	V	v	v	٧		v		
	SSM/I	19.35;22.235;37.0;85.5	V	V	v		٧	٧		v
	TRMM /TMI	10.65;19.35;21.3;37;85.5		v						٧
	WindSat	6.8;10.7;18.7;23.8;37	v	v						v
	SSMIS	19.35;22.235;37;50- 60;91.655;150;183.31	v	v	V			V		٧
Single Frequency	ASCAT	5.255								V
	ERS	5.3								٧
	QuikSCAT	13.4								V
	Aquarius	1.413							٧	
	SMOS	1.41				V			V	
Ī	SMAP	1.26; 1.41				V	V			

Problems of Current Observations

1. Lack of synergetic observations on environmental factors affecting the retrieval of water cycle parameters 2. Lack of systematic observations on the water cycle parameters related to each other for water cycle modeling

Parameters	Disadvantages in Observations	Disadvantages in Retrievals
Soil Moisture	Weak penetration for high freq.; lack of temperature for low freq.; RFI	Lack of valid inversion technique on vegetation and surface roughness
SWE	Low spatial resolution for passive microwave	More considerations needed for snow process and atmosphere conditions
FT	Low spatial resolution for passive microwave	Limited validity for using fixed Threshold values
Sea Salinity	Lack of temperature and atmosphere observations	Lack of surface temperature and roughness correction
Sea Evaporation	Lack of simultaneous observations on both sea surface and atmospheric factors	Uncertainties in the inversion of related parameters
Precipitation	Insufficient cloud 3D properties	Need to Discern rain and snow

Perspectives of WCOM

China's 1st science driven mission for EO with combined active and passive, multiple frequency microwave measurements on key water cycle components of land, ocean and atmosphere

- 1. Advanced Sensors
- 2. Accurate Inversion
- 3. Systematic observations

Scientific questions :

The coupling of key water cycle components and the feedbacks to global changes

WCOM: a synergetic water cycle observation mission

- To significantly improve the accuracy and synchronization of measurements for spatial and temporal distribution of global water cycle key parameters and system
- To refine the long-term satellite observations over past decades by improving water cycle models with improved observations

Mission Overview

Observation requirements:

Synergetic observations of global water cycle

Synergetic:

- Systematic observations of water cycle variables of land, ocean and atmosphere
- Simultaneous observation of sensitive parameters and auxiliary parameters (atmospheric and surface corrections) for retrieval

Payloads

Combined active passive, multiple frequency, polarized microwave instrument

Payloads Configuration

- IMI, Interferometric polarimetric Microwave Imager: Soil Moisture and Sea Salinity
- DPS, Dual-frequency Polarized Scatterometer: SWE and FT
- PMI, Polarimetric Microwave Imager, 6.8~89GHz: Temperature, rain, water vapor, atmosphere correction, and bridge to historical data

Payloads	IMI	PMI	DPS
Frequency (GHz)	L, S ,C (1.4,2.4,6.8)	C~W (6.8,10.65,18.7,23.8,37,89)	X, Ku (9.6,17)
Spatial Resolution (km)	L: 50, S: 30, C:15	4~50 (frequencies)	2~5 (processed)
Swath Width (km)	>1000	>1000	>1000
Polarization	Full-Pol	Full-Pol	Full-Pol
Sensitivity	0.1~0.2K	0.3~0.5K	0.5dB
Temporal Resolution (Day)	2~3	2~3	2~3

Payload specifications

Payload/Specs	IMI	DPS	PMI
Frequency (GHz)	L, S, C (1.4135, 2.695, 6.9)	X, Ku (9.6,17)	6.8/7.2,10.7,18.7,2 3.8,37,90
Resolution (km)	L: 50, S: 30, C:15	2~5 (after processing)	50,30,20,15,10,5
Swath (km)	≥1000	≥1000	≥1000
Polarization	Full-polarimetic	HH,VV,HV/VH	Full-pol for 10.7/18.7/37
Radiometric sensitivity	0.2~0.4K	0.5dB	0.3~0.5K
Calibration accuracy/stability	L : 0.12K/3 day ; S,C : 0.4K/3 day	0.15dB	Better than 0.5K

IMI: Interferometric polarimetric Microwave Imager

Cylindrical reflector +

1D interferometric synthetic aperture

- Deployable large mesh reflector (6mX9m) to minimize the launch dimension
- Multiple frequency (L/S/C) share the reflector
- High precision thermal control of the integrated <u>feed+RF-front</u>, to implement radiometric precision and stability

DPS: Dual-frequency Polarized Scatterometer

Rotating Pencil-Beam Radar Scatterometer

- X-Ku dual-frequency polarized (HH, VV, HV/VH)
- Rotating pencil-beam for higher antenna gain and SNR (cross-pol)
- Dual frequency share the reflector;
- Antenna aperture dimension: ~1.5m to adapt to the launch contour and scanning loss;
- Co-pol and cross-pol;
- Spatial resolution
 - **Elevation: LFM and pulse compressio**

Azimuth:

Outer swath (>30deg)→SAR Center swath (<30deg)→oversampling and super-resolution reconstruction

Polarimetric Microwave Imager

Multi-frequency Conically Scanning Radiometric Imager

- Reflector dimension: 1.8m;
- Multiple frequency (6.8/7.2~90GHz)
- Full-polarimetric for surface imaging (10.7, 18.7, 37GHz)
- Width swath: >1000km
- Calibration: on-board two-point
- Stowed antenna during launch and deploy after in orbit

PMI:

Deployment and observation mode

Orbit

■Orbit design

- Observation requirements (stable for retrieval)
- Resolution and swath
- Power supply

Orbit parameters (preliminary)

- Orbit altitude: 645km
- Orbit return: every 4 days
- Payload swath: >1000km
- 6:00am dawn/dusk SSO

■Surface coverage:

- Coverage between N/S 20~90deg: 99.79%
- Global coverage: 96.15%/3day.

Advantages of WCOM Payloads Configuration and Design

Heipiu

	IMI	PMI	DPS
Soil Moisture	 More sensitive to land surface Minimizing vegetation effects Mitigating RFI 	 Sensitive to temperature Observing large-scale surface roughness 	 Surface Roughness and vegetation High resolution soil moisture
Sea Salinity	 More sensitive to sea surface Faraday rotation correction 	 Effective correction on atmosphere Sensitive to sea surface temperature 	High resolution Wind Vector
Sea Evaporation	Corrections on sea surface roughness	Sensitive to temperature	High resolution Wind Vector
FT	Obtaining Soil Surface Parameters	Sensitive to temperature changes	 Time series techniques for FT detection Downscaling techniques for FT inversion
SWE	Obtaining Soil Surface Parameters	Obtaining SWE by scattering effects	 Estimating SWE Mitigating Mixed pixel effects
Vapor and Precipitation	Helping determine land surface emissivity	 Obtaining Water Vapor Precipitation Rate Discerning Rain and snow 	High resolution observations on precipitation
	X 7' - 1		

Major

Payloads Configuration:1) Optimal sensitive frequency for retrieval,2) Effectivecorrections on affecting factors,3) Simultaneous observations1552

Vital

Potentials for Ocean Surface Vector Wind Measurement

OSVW measurement capabilities

- Active microwave: DPS-dual frequency polarized scatterometer
 - X and Ku band (9.6, 17GHz)
 - HH, VV, HV/VH
- Passive microwave: PMIpolarimetric microwave imager
 - 6.9, 10.7, 18.7, 23.8, 37, 89GHz
 - Full-polarimetric: 10.7, 18.7, 37GHz

Potentials for improvement

- > Higher wind speed capability
 - Cross-polarization observations
 - Combined active/passive with lower frequency observations
- Mitigation of rain contamination
 - Combined active/passive

DPS specifications

Specifications	Parameters				
Frequency	9.6GHz, 17GHz				
Bandwidth	5MHz				
Swath	>1000km				
Peak Power	200W/150W				
Polarization	HH, VV, HV, VH				
Antenna aperture	1.5m×1.5m				
Incident angle	$\sim 39^{\circ}$				
sigma A rango	HH, VV: $+15 \sim -25 dB$				
sigma v range	HV, VH: $+5 \sim -35$ dB				
sigma 0 precision	优于0.5dB				
Raw resolution	50m (azimuth)×15km (elevation)				
Reconstructed resolution	$2\sim$ 5km				
(for SWE)					

Ocean surface current measurement capability is under consideration, main challenge is the satellite attitude determination precision (<0.001deg)

PMI specifications

Frequency (GHz)	Bandwidth (MHz)	Polarization	Radiometric Resolution (K)	Spatial Resolution (along track × cross track) (km)
6.8/7.2	350	V, H	0.3	53×31
10.7	300	FULL	0.4	34 ×19
19.1	750	FULL	0.3	19×11
23.8	500	V, H	0.5	15×9
37.0	2000	FULL	0.3	10×6
90	2000	V, H	0.5	4×2

WCOM: Future development and implementation plan

- 2017: preparation for implementation, satellite and payload development to be kicked-off before October
- ■2017-2018: detailed design
- **2019: engineering model and test**
- ■2020: flight model and test
- 2021: launch and in-orbit commissioning

WCOM

A global water cycle consolidation

Thank You!

WCOM: International collaborations are Welcome!