Towards a new ASCAT wind product for assimilation in global NWP

M. Portabella (ICM-CSIC)
W. Lin (ICM-CSIC)
A. Stoffelen (KNMI)
G. De Chiara (ECMWF)
2. From 2DVAR to 4D-Var

Table 1. Summary of the ASCAT wind process associated with 2DVAR @ KNMI and 4D-Var @ IFS ECMWF

<table>
<thead>
<tr>
<th></th>
<th>2DVAR (KNMI)</th>
<th>4D-Var (IFS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GMF</td>
<td>CMOD5n</td>
<td>CMOD5n</td>
</tr>
<tr>
<td>σ^0 correction</td>
<td>Yes (NOC)</td>
<td>Yes</td>
</tr>
<tr>
<td>Wspd bias correction</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Ambiguities</td>
<td>2-4</td>
<td>Always 2</td>
</tr>
<tr>
<td>Background</td>
<td>Spatial and temporal Interpolation from three 3-hourly forecasts</td>
<td>Short range forecast from the operations for a certain analysis batch</td>
</tr>
<tr>
<td>Quality control</td>
<td>MLE</td>
<td>Wspd $>$ 35 m/s</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wdir difference $<$ 135°</td>
</tr>
<tr>
<td>Thinning</td>
<td>No</td>
<td>Sea ice fraction</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Yes (25 km, by 4)</td>
</tr>
</tbody>
</table>
From 2D-Var to 4D-Var

\[J(x) = (y_o - H[x])^T R^{-1} (y_o - H[x]) + (x - x_b)^T B^{-1} (x - x_b) \]

- Observation term
- Background term

- \(R \) (\(B \)) is a matrix, often specified through the square root of the diagonals \(\sigma_O \) (\(\sigma_B \)) and a correlation matrix (e.g., identity matrix in case of \(R \)).
- \(R \) and \(B \) together determine the weight of an observation in the assimilation.
- In the linear case, the minimum of the cost function can be found at \(x_a \):

\[(x_a - x_b) = BH^T (HBH^T + R)^{-1} (y_o - Hx_b) \]

- Increment
- \(o-b \) departure

- Large observation error \(\rightarrow \) smaller increment, analysis closer to background
- Small observation error \(\rightarrow \) larger increment, analysis closer to observation
2D-VAR new settings: Numerical Background error correlation

- **Gaussian Structure Function (GSF, default setting)**
 - Scale Length (km): Tropical = 212, Non-tropical = 424
 - Rotation/divergence ratio: Tropical = 0.2, Non-tropical = 0.5

- **Numerical Structure Function (NSF, derived from ASCAT L2 files O-B autocorrelation, new setting)**
 - Scale Length (km): Entire region = 552(494)
 - Rotation/divergence ratio: Entire region = 0.62
2D-Var new settings: flexible O/B errors

ECMWF Ensemble Data Assimilation (EDA background error)

ASCAT-derived ECMWF background error by triple collocation in QC classes

Estimated O & B error variances (Lin et al., JGR, 2015)
In 4D-Var …

- O/B errors specified in assimilation systems are often simplified:
 - Fixed “σ₀” and “σᵦ”;
 - No presence of observation error correlations (Diagonal O error covariance)
 - The provision of situation-dependent background error covariances is an area of extensive research (Bonavita et al., 2012)

 - Thinning (25 km product, thinning factor of 4)
 - reduce observation density so that error correlations are not relevant.
 - Error inflation
 - use diagonal R with larger σ₀ than diagnostics suggest.
 - Take error correlations into account in the assimilation
ASCAT 25-km winds

SD errors [m/s]

ASCAT 25-km winds thinned

Thinning by a factor of 4x4
Schematic representation of the grid points (each small box represents a 25 km×25 km WVC) used in the global NWP data assimilation: (a) when a thinning of 4 (i.e., one WVC every 4 along and across track WVCs) is applied; (b) when the new low resolution product is used. Note that in the right panel 3x3 high-resolution WVC winds are averaged to produce the low resolution product.
ASCAT wind fields superimposed on the observation errors

Note the range of colorbars

Actually, ECMWF assimilates wind ambiguities
rough categorization 4%, 6% and 90%

(Left) The representativeness error and (right) the estimated error SDs as a function of wind quality category for different ASCAT wind data sources. The error bars denote the uncertainty in the estimated observation errors.
Quality Control

Table: Vector root-mean-square (VRMS) difference [m/s] between ASCAT and buoy winds (or ASCAT and ECMWF winds, in parenthesis) for the different data categories. Note that only ASCAT winds above 4 m/s are used.

<table>
<thead>
<tr>
<th></th>
<th>12.5-km</th>
<th>25-km</th>
<th>50-km</th>
<th>62.5-km</th>
<th>100-km</th>
</tr>
</thead>
<tbody>
<tr>
<td>QC-accepted</td>
<td>2.25 (2.35)</td>
<td>2.31 (2.22)</td>
<td>2.35 (2.23)</td>
<td>2.41 (2.19)</td>
<td>2.62 (2.04)</td>
</tr>
<tr>
<td>QC-rejected</td>
<td>7.3 (6.6)</td>
<td>7.1 (6.0)</td>
<td>7.1 (5.6)</td>
<td>7.5 (5.6)</td>
<td>7.5 (5.2)</td>
</tr>
</tbody>
</table>

- Similar % of rejections for all products
- In general, the lower (higher) the ASCAT resolution, the better the agreement with ECMWF (buoys)
- Larger VRMS in 12.5-km product than in 25 & 50 km (w.r.t. buoys may be due to presence of rain or wind bursts (needs further investigation)
Wind speed bias correction

Figure. 2-D histogram of ASCAT 25-km wind speed versus ECMWF wind speed for WVC #1: (a) without bias correction; (b) after applying bias correction. The black (magenta) curve illustrates the mean ECMWF (ASCAT) wind speed at a set of ASCAT (ECMWF) speed bins, in which the binning is set to 1 m/s.

- In general, reduced biases at low and high wind speeds
Conclusions

◆ Situation-dependent O/B errors can be derived. They, together with the empirical background error correlation, improve 2D-Var significantly.

◆ The upscaling filters small-scale uncertainties to a certain extent, such that the upscaled winds are more representative of the NWP-scale winds than the nominal 12.5-km/25-km products.

◆ Upscaled low resolution product shows lowest error on ECMWF scale among the studied data sets, even under highly-variable conditions.

◆ Wind-speed bias correction and QC have been developed for all products.

◆ Impact experiments @IFS/ECMWF coming soon.

◆ If positive impact, a sigma0-upscaled product may be developed
3 Preliminary results – potential methods to improve 4DVAR

Upscaling to low grid resolution, KEY parameters:

- Averaged u/v components
- Averaged O/B error variances from TC analysis
- SD u/v within NxN box
- Quality assessment of the upscaled product

Upscaling: 4 x 4

12.5 km

Thinning: a factor of 4
Fig. 2a (left) **IFS** ASCAT ambiguities superimposed with MLE; (b) IFS ASCAT selected solutions
Fig. 2b (left) **AWDP** ASCAT ambiguities superimposed with MLE; (b) AWDP ASCAT selected solutions
Fig. 3a (left) **IFS ASCAT ambiguities superimposed with MLE**; (b) **IFS ASCAT selected solutions**
Fig. 3b (left) **AWDP** ASCAT ambiguities superimposed with MLE; (b) AWDP ASCAT selected solutions
ASCAT wind vectors superimposed with speed

ASCAT wind vectors superimposed with the estimated Observation SD errors [Lin et al., JGR, 2015]
ASCAT wind vectors superimposed with speed

ASCAT wind vectors superimposed with the estimated Observation SD errors [Lin et al., JGR, 2015]

Thinning: a factor of 4
ASCAT wind vectors superimposed with speed

Upscaling: 3x3

ASCAT wind vectors superimposed with the estimated Observation SD errors
ASCAT wind vectors superimposed with speed

Upscaling: 4x4

ASCAT wind vectors superimposed with the estimated Observation SD errors
Wind speed bias correction

Figure. The bias correction values as a function of ASCAT wind speed for (a) ASCAT 25-km data and different WVC numbers, and for (b) WVC #1 and different ASCAT data products.

- In general, larger WVC-dependent than resolution dependent correction factors