

Evaluating and Extending the Ocean Wind Climate Data Record

Prepared for: Earth Science Division NASA Headquarters

Prepared by:
Ocean Vector Wind Science Team (OVWST)
Climate Working Group

Telecon Briefing Presented by: Frank J. Wentz February 16, 2016

Acknowledgments

NASA's Ocean Vector Wind Science Team (OVWST) Climate Working Group

Brigham Young University

David Long

Florida State University (FSU)

Mark Bourassa, FSU

Jet Propulsion Laboratory (JPL)

Ernesto Rodriguez, Bryan Stiles, Robert Gaston, Alexander Fore, Sermsak Jaruwatanadilok, Svetla Hristova Veleva, Joe Turk, Lee Poulsen, Douglas Tyler

National Oceanic and Atmospheric Administration (NOAA)

Ross Hoffman

Oregon State University (OSU)

Larry O'Neill

Remote Sensing Systems (RSS)

Frank Wentz, Lucrezia Ricciardulli and Deborah K. Smith

Royal Netherlands Meteorological Institute (KNMI)

Ad Stoffelen and Anton Verhoef

University of New Hampshire

Douglas Vandemark

Woods Hole Oceanographic Institution (WHOI)

Tom Farrar

Eric Lindstrom at NASA Headquarters gave guidance and advice on the scope of the Report

Executive Summary

- Satellite sensors have been systematically measuring ocean winds for 30 years

 An vital legacy in studying and monitoring climate variability of the planet's ocean-atmosphere coupling
- ➤ The 30-year archive of wind datasets needs to be maintained and periodically updated Without version updates and advocacy the older datasets lose consistency with newer datasets
- Possible end of the 30-year wind speed record from satellite radiometers is of concern No commitments for follow-on sensors to WindSat, AMSR-2, GMI, or SSM/IS
- The need for absolute wind calibration via ocean buoys will continue into the future
- > Plans for evaluating current wind datasets are given, including an OVWST Intercomparison Project
- Methods to be used for extending the OW-CDR into the future (to ScatSat and beyond)
 - 1. Direct Ku-band σ_0 intercalibration (QuikScat/RapidScat \rightarrow ScatSat) Requires extension of QuikScat Mission
 - 2. Multi-sensor wind speed intercalibration (ASCAT-A&B/WindSat/AMSR2/GMI → ScatSat)
 - 3. Stable rain forest targets
- ➤ RapidScat has unique diurnal capabilities. Every effort should be made to compensate for its gain anomaly.
- > Research should focus on improving the assimilation of satellite winds into numerical models designed to preserve the satellite wind information

30-Years of Satellite Winds

28 Satellite Wind Sensors:

- 18 passive microwave radiometers
- 10 active microwave scatterometers (Altimeters not included)

Current and Future Scatterometer Vector Wind Datasets

Instrument	Document Reference	Time Period	Production Institutions
ERS-1 AMI-SCAT	ERS-1	Jul 1991 – Apr 1996	ESA
ERS-2 AMI-SCAT	ERS-2	Apr 1995 – Jun 2003	ESA
ADEOS-I NSCAT	NSCAT	Sep 1996 – Jun 1997	JPL, RSS
ADEOS-II SeaWinds	SeaWinds	Dec 2002 – Oct 2003	JPL, RSS
QuikScat SeaWinds	QuikScat	Jun 1999 – Nov 2009	JPL, RSS, KNMI
Metop-A ASCAT	ASCAT-A	Oct 2006 – present	KNMI, RSS
Metop-B ASCAT	ASCAT-B	Sep 2012 - present	KNMI
Metop-C ASCAT	ASCAT-C	2018 (planned)	
ISS RapidScat	RapidScat	Oct 2014 - present	JPL
Oceansat-2 OSCAT	Oceansat-2	Sep 2009 – Feb 2014	ISRO, KNMI
ScatSat-1 OSCAT	ScatSat	Jun 2016 (planned)	

Radiometer Wind Speed Datasets

Instrument	Document Reference	Time Period	Production Institutions
F08 SSM/I	F08	Jul 1987 – Dec 1991	RSS
F10 SSM/I	F10	Dec 1990 – Nov 1997	RSS
F11 SSM/I	F11	Dec 1991 – May 2000	RSS
F13 SSM/I	F13	May 1995 – Nov 2009	RSS
F14 SSM/I	F14	May 1997 – Aug 2008	RSS
F15 SSM/I	F15	Dec 1999 – present	RSS
F16 SSMIS	F16	Oct 2003 – present	RSS
F17 SSMIS	F17	Dec 2006 – present	RSS
F18 SSMIS	F18	Oct 2009 – present	
F19 SSMIS	F19	Apr 2014 – present	
TRMM TMI	TMI	Nov 1997 – Apr 2015	RSS
ADEOS-II AMSR	AMSR	Dec 2002 – Oct 2003	RSS, JAXA
AQUA AMSR-E	AMSRE	May 2002 – Oct 2011	RSS, JAXA
GCOM-W1 AMSR2	AMSR2	May 2012 – present	RSS, JAXA
Coriolis WindSat	WindSat	Jan 2003 – present	RSS, NRL
GPM GMI	GMI	Feb 2014 – present	RSS
Aquarius	Aquarius	Jun 2011 – Jun 2015	RSS, JPL
SMAP	SMAP	Jan 2015 - present	RSS, JPL

Wind Speed Accuracy Requirements

From WMO Global Climate Observing System (GCOS)

- Wind Speed Accuracy
 - 0.5 m/s for low to moderate winds
 - 10% for winds exceeding 20 m/s
- Sampling Requirements
 - 10 km
 - 3 hours
- > Stability requirement is 0.1 m/s/decade
- Relative stability of 0.03 m/s/decade observed among WindSat, QuikScat, and TMI over 10 years ¹

¹ Wentz, F.J., 2015: A 17-year climate record of environmental parameters derived from the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager. *Journal of Climate*, *28*, 6882-6902

Evaluating the OW-CDRs

1. Comparisons of OW retrievals with buoy winds

Plus: Provides absolute calibration for wind speed up to 15-20 m/s. Minus: Buoy data spatially very sparse; surface currents not available.

2. Comparisons of OW retrievals with winds from numerical model (such as ECMWF and NCEP)

Plus: Global comparisons.

Minus: Systematic errors exist in the numerical analyses and can be large.

3. Comparisons of OW retrievals from sensors on two different platforms

Plus: Direct measurements of the same wind field; validation dataset not required.

Minus: Comparisons limited by the required tight spatial/temporal collocation.

4. Comparisons of OVW retrievals produced by different data providers

Plus: Reveals algorithmic uncertainties; validation data not required; no collocation issue.

Minus: Does not reveal common system errors.

Assimilation of Satellite Winds into Numerical Models

- Much satellite wind information is lost in Operational Weather Forecast Models (NCEP, ECMWF)
- Spatial and temporal sample of satellite winds poses problems
 - Different local times over an orbit
 - Large spatial holes
- Natural diurnal variability compounds the problem
 - 6 am OW-CDR is different from a 9 am OW-CDR or a 6 pm OW-CDR
 - Global and spatial long-term (decades) trends may be different at different local times
- Seek a middle ground between the 'raw' satellite retrievals and the forecast models
 - CCMP (Cross-Calibrated, Multiple Platform)
 - ERA* (ECMWF Reanalysis)
- Current CCMP widely used in spite of its shortcoming. It could be made better.
 - Long-term trend distortion needs to be fixed
 - Chelton and Bourassa have ideas for improving
 - Leverage off of ERA* work

OVWST Inter-Comparison Project

Focus on producing a OVW-CDR from Multiple Sensors

Transition from QuikScat (1999-2009 normal spinning mode) to ASCAT-A forms Backbone of OVW-CDR

- Essential that this transition be handled properly
- Sensors have different local observations times; how to handle this?
- TMI can be used to connect sensors between 40S and 40N, but just wind speed
- Information coming from RapidScat, ASCAT, and GMI will help

RapidScat versus ASCAT provides Ku-band and C-band Observations at Same Time

RapidScat's gain anomalies must be considered

Compare Different Methods for Inter-Calibrating Sensors

Independent assessments by members of Climate Working Group