

EUMETSAT

OSI SAF

Royal Netherlands Meteorological Institute Ministry of Infrastructure and the Environment

ON CLIMATE DATA RECORDS, TRENDS AND EXTREMES

Ad Stoffelen, Anton Verhoef, Jeroen Verspeek, Jos de Kloe, Jur Vogelzang, Maria Belmonte : *KNMI , the Netherlands* Ana Trindade, Marcos Portabella :

NWP SAF

Satellite scatterometers

Ň

ERS & ASCAT

Noise

ASCAT has better noise properties

Cone analyses

- Tracking changes in maximum density surface
- Independent of wind PDF

Antenna beam offsets

1) Minimize the STD of the cone difference { Δx , Δy , Δz }

2) Translate into constant beam offsets:

- Cone shifts translate into constant beam offsets
- Residuals inform about more complex calibration relations (non-linearity)

- Linear calibration offsets: comparable to NOC

ERS2 to ASCAT REF

Climate wind trends 1999-2009

Required accuracy is 0.1 m/s per 10 years

Ň

- Trends sampled at buoys are different from global trends sampled by QSCAT or ERA
- Moored buoys are **absolutely** needed for satellite calibration
- Moored buoys do not represent the global climate (SH lacking)
- Satellites can measure global climate change

Wind speed bias: QuikSCAT - ERA-Interim

• Wind speed bias shows gradual decrease over time

Wind speed bias: ASCAT - ERA-Interim

• Wind speed bias shows decrease followed by an increase

Wind speed bias vs. buoys

- Wind speed bias shows decrease until 2006 followed by an increase starting in 2010, approx. 2 times stronger than vs. NWP
- Seasonal oscillations (mainly due to contributions from extratropical buoys) appear stronger in ASCAT - repeat cycle?
- Wind speeds from scatterometer, buoys and ERA-Interim decrease, mainly in the tropics over 1999-2009 (~0.4 m/s)

Wind component SD: QuikSCAT

- Standard deviations vs. ECMWF decrease over time
- Standard deviations vs. buoys are rather constant
- This indicates that the ERA-Interim winds improve over time

Wind component SD: ASCAT

- Standard deviations vs. ERA-Interim *increase* over time after 2010
- Lack of assimilated scatterometer winds after QuikSCAT ended?
- Standard deviations vs. buoys are again rather constant

Climate extremes

PERCENTAGE OF HURRICANES >20 M/S IN ERA-INTERIM FOR SCAT WINDS > 20 M/S ACCUMULATED PDF OF SCATTEROMETER WINDS ABOVE 20 M/S

ASCAT hits on Vongfong

- Peak around midnight on 7/8 October 2014 of 42 m/s (150 km/h)
- ASCAT-A appears low as compared to ASCAT-B
- 2014 calibration bias B-A of 0.1 dB (nominally 0.1 m/s)
- Required accuracy is 0.2 dB
- Due to GMF saturation, 0.1 dB at 40 m/s is 4 m/s !
- For extremes more careful instrument calibration is needed
- MetOp-SG will have VH pol. channel

CDR wind/stress curl and div

Based on (L2) swath U10S curl and divergence

ASCAT mean curl 2014 @ ASCAT

Mean ASCAT-ECMWF @ ASCAT

- Reprocessing – software and calibration

- Reprocessing will be done using the wind processing software packages which are publicly available in the NWP SAF (AWDP, PenWP and its predecessors)
- Data from different sensors will be inter-calibrated using buoy winds, ECMWF model winds and established methods, such as triple collocation
- Our goal is to calibrate the winds to a level as close as possible to the moored buoy winds
- Follow GCOS guidelines

ECMWF ERA-interim

- ECMWF ERA-Interim wind forecast data will be used as a reference for users, to initialize the ambiguity removal step and to monitor the data records; ERA analyses are not independent from ERS, QSCAT, etc., but forecasts are!
- ERA-Interim data are available over the entire period (in fact from 1979 to present) and produced with a single version of ECMWF's Integrated Forecast System, i.e., is a climate reference
- ERA-Interim fields are retrieved without interpolation error on a reduced Gaussian grid with approximately 79 km spacing
- Although data from the operational model are available at higher resolution for most periods, they have varying characteristics over time so we will not use them (up to 0.2 m/s mean changes)
- ERA-Interim does not have equivalent neutral 10m winds (U10N) nor U10S archived; we compute them from the real 10m winds, SST, T and q using a stand-alone implementation of the ECMWF model surface layer physics (tested using real 10m and U10N winds from the operational model) and will put them available at KNMI

Sampling error

- All scatterometers sample the atmosphere spatially and temporally in a non-uniform way due to swath geometry and QC (rain); this causes substantial sampling errors
- ERA-interim U10S is collocated in time and space with all (valid) scatterometer winds and processed to the same L2 and L3 products
- Users may thus compare the spatial and temporal mean ERA-interim values as sampled by the scatterometer with uniformly sampled ERA-interim values in order to obtain an estimate of the sampling error fields of the scatterometer
- Improved spatial and temporal averages are thus obtained by subtracting the estimated sampling error from ERAinterim from the scatterometer climatology

Ice maps

- Ice probability and ice age (Aparameter, albedo) are computed as part of the Bayesian ice screening procedure
- Daily ice maps in Polar Stereographic projection will be made available in NetCDF format
- The format is according to the NetCDF-CF conventions

Summary

- Wind CDRs will be created from several scatterometers spanning 25 years in total
- > Focus will be on a proper inter-calibration of the various data records
- The latest versions processing software are used to get state-of-theart wind products
- Information will be provided to estimate sampling errors
- Wind and ice map data will be provided by various archives both in BUFR and user-friendly NetCDF-CF formats
- Work on NetCDF-CF standards and DOIs
- Resources are needed for international collaboration/standards
- SST dependence of winds is not included and is further investigated
- CMEMS supports L3 and L4 products

scat@knmi.nl

www.eumetsat.int/website/home/Data/DataDelivery/EUMETSATDataCentre/

<u>www.myocean.eu</u>

podaac.jpl.nasa.gov/ (TBC)

Ku vs C

- Collocated
- A/RSCAT rejects
 1/10%
- High latitude low bias RSCAT
- Convection stands out in R and ASCAT
- R and A agree!
- RSCAT little more red though
- Ku depends on SST

0

ASCAT U10S minus ECMWF U10N

- > 2012
- Above 45 latitude
- Clear correlation of ASCAT U10N with air mass density as expected
- Less so in tropics, where q comes in!

Ocean Vector Surface Winds Constellation Local time coverage assessment (ground track) - NRT data access

Intercomparison

High resolution winds and coastal masking, QC

Winds using LCR < -20 dB

- No on-board aggregation for CSCAT
- Nearer to the coast
- Exclude ships, cities, .

Nominal winds (R. Lindsley)

$$\frac{\text{LCR}}{\int \int_{\text{SRF}} h_i(x, y) \, dx \, dy} \approx \frac{\int \int_{\text{SRF}} h_i(x, y) \, dx \, dy}{\int \int_{\text{SRF}} h_i(x, y) \, dx \, dy} \approx \frac{\int \int_{\text{SRF}} h_i(x, y) \, dx \, dy}{\int \int_{\text{SRF}} h_i(x, y) \, dx \, dy} \approx \frac{\int \int_{\text{SRF}} h_i(x, y) \, dx \, dy}{\int \int_{\text{SRF}} h_i(x, y) \, dx \, dy} \approx \frac{\int \int_{\text{SRF}} h_i(x, y) \, dx \, dy}{\int \int_{\text{SRF}} h_i(x, y) \, dx \, dy} \approx \frac{\int \int_{\text{SRF}} h_i(x, y) \, dx \, dy}{\int \int_{\text{SRF}} h_i(x, y) \, dx \, dy} \approx \frac{\int \int_{\text{SRF}} h_i(x, y) \, dx \, dy}{\int \int_{\text{SRF}} h_i(x, y) \, dx \, dy} \approx \frac{\int \int_{\text{SRF}} h_i(x, y) \, dx \, dy}{\int \int_{\text{SRF}} h_i(x, y) \, dx \, dy} \approx \frac{\int \int_{\text{SRF}} h_i(x, y) \, dx \, dy}{\int \int_{\text{SRF}} h_i(x, y) \, dx \, dy}$$

$$\frac{\sum_{x,y} L[x,y]h_i[x,y]}{\sum_{x,y} h_i[x,y]}$$

 $\begin{array}{c|c} \mbox{land} & \mbox{LCR} = 1 \\ \mbox{ocean} & \mbox{LCR} = 0 \\ \mbox{mixture} & \mbox{0} < \mbox{LCR} < 1 \\ \end{array}$

Wind variability

Bias patterns with NWP

- Systematic wrong ocean forcing in the tropics
- Violates BLUE in data assimilation systems (DAS)
- Similar patterns every day, due to convection, parameterisation, current
- Correct biases before DAS
- Correct ocean forcing in climate runs
- Investigate moist convective processes
- Measure ocean currents to obtain stress

Blending error?

- What does a mean daily 80 satellite wind represent physically?
- Sampling 4 error is substantial
- Tracks are visible
- Transient weather appears as noise
- Diurnal cycle removed
- Time resolution in ERA is lost

THE COLOR MAP DEPICTS THE WIND SPEED DIFFERENCES BETWEEN A DAY OF THESE SCATTEROMETER-SAMPLED ECMWF WINDS AND UNIFORMLY SAMPLED ECMWF WINDS.

Future users

- Make processing packages publicly available ; allow "cloud" processing;
- Improve accuracy by comparing products of different producers; according to agreed validation standards
- Provide inter-calibrated data between instruments
- Provide calibration w.r.t. buoy winds
- Training and outreach

Stress-equivalent wind

- Radiometers/scatterometers measure ocean roughness
- Ocean roughness consists in small (cm) waves generated by air impact and subsequent wave breaking processes; depends on gravity, water mass density, water viscosity, surface tension σ, and e.m. sea properties (assumed constant)
- Air-sea momentum exchange is described by $\tau = \rho_{air} u_* u_*$, the stress vector; depends on air mass density ρ_{air} , friction velocity vector u_*
- Surface layer winds (e.g., u₁₀) depend on u_{*}, atmospheric stability, surface roughness and the presence of ocean currents
- Equivalent neutral winds, u_{10N}, depend only on u_{*}, surface roughness and the presence of ocean currents and is currently used for backscatter geophysical model functions (GMFs)

► $u_{10S} = \sqrt{\rho_{air}} \cdot u_{10N} / \sqrt{\rho_0}$ is suggested to be a better input for backscatter GMFs (stress-equivalent wind)

Stress-equivalent wind

Equivalent neutral winds, u_{10N} , depend only on u_* , surface roughness and the presence of ocean currents and were used for backscatter geophysical model functions (GMFs)

Stress-equivalent wind, $u_{10S} = \sqrt{\rho_{air}} \cdot u_{10N} / \sqrt{\rho_{ref}}$ is a better input for backscatter GMFs

Implemented in CMEMS and under evaluation in the IOVWST

From U10S to stress: drag

- Stress-equivalent winds are computed for validation of scatterometer wind vectors: independent of atmospheric stratification and incl. air mass density
- Obtain drag to compute stress

