

To provide operational users and the science community with the SST measured by the satellite constellation Introduction to the CEOS Virtual Constellation for Sea Surface Temperature (SST-VC) and Group for High Resolution Sea Surface Temperature (GHRSST)

> Misako Kachi on behalf of CEOS SST-VC Kenneth Casey, Anne O'Carroll, Victor Zlotnicki, Craig Donlon, Helen Beggs, Christo Whittle, PK Thapliyal, Peter Minnett,

Gary Corlett

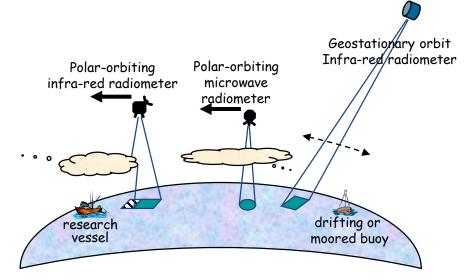
GHRSST and CEOS SST-VC

<u>GHRSST</u>

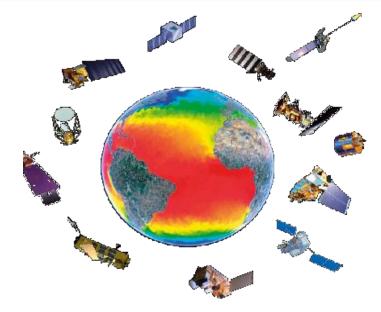
- The Group for High Resolution Sea Surface Temperature
 - Grew out of a Pilot Project of the Global Ocean Data Assimilation Experiment (GODAE), 1997-2008.
- Composed of an international Science Team of researchers and operational practitioners.
- Coordinates research and operational developments in satellite-derived SST.
- Data processing through Regional and Global Data Assembly Centers.

<u>SST-VC</u>

- The Sea Surface Temperature Virtual Constellation (SST-VC) serves as the formal link between GHRSST and the broader CEOS community.
- The SST-VC provides a means for CEOS to present its needs and requirements to GHRSST and for GHRSST to present its needs directly to CEOS.



http://www.ghrsst.org



Optimizing the SST constellation

GHRSST exploits complementary data sources

- Polar Orbiting infrared has *high accuracy & spatial resolution*
- Geostationary infrared has *high temporal resolution*
- Microwave Polar orbiting has *all-weather capability*
- In situ data provide *reality in all weather conditions*

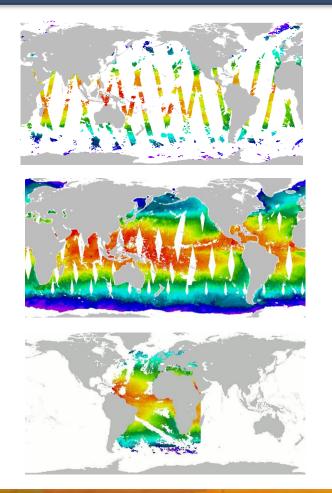
SST constellation gap analysis

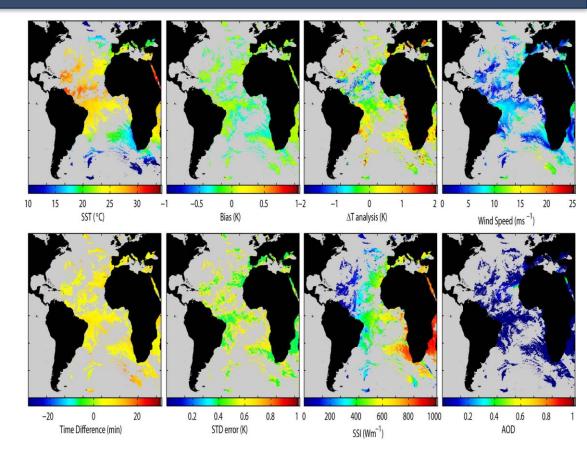
- Current gaps that need attention include:
 - Redundant capability in microwave SST measurements (NSOAS)
 - Geostationary SST over Indian Ocean (ISRO; CMA)
 - Replacement 'reference' dual-view satellite radiometer (SLSTR)

http://www.ghrsst.org

Data Processing Levels

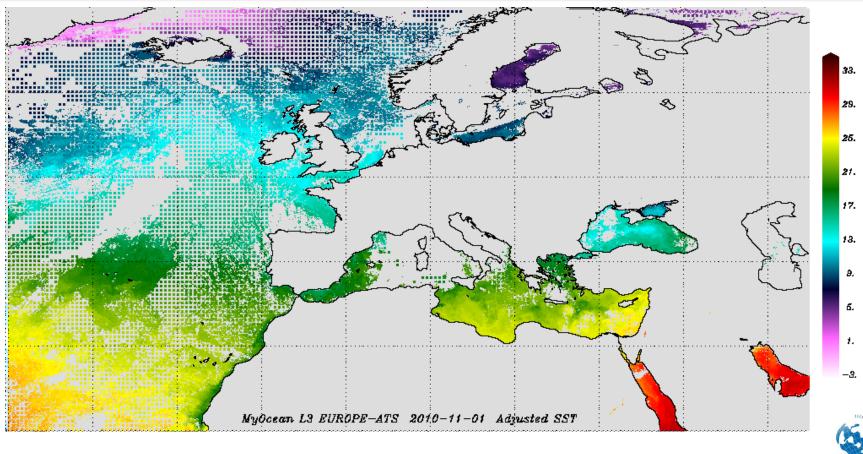
Data Level	Description		
Level 0	Reconstructed, unprocessed instrument and payload data at full resolution.]	Provided by each
Level 1B	Level 0 data that have been processed to geolocated radiances		sensor provider
Level 2P	Derived SST at the same resolution and location as Level 1B source data.	Ī	GDS
Level 3	Variables mapped on uniform space-time grid scales, with some degree of spatial averaging (L3U and L3S) and temporal averaging (L3C).		format based CF compliant NetCDF
Level 4	Output from analyses of lower-level data (e.g., variables derived from multiple measurements).		




http://www.ghrsst.org

L2P: Common format with uncertainties

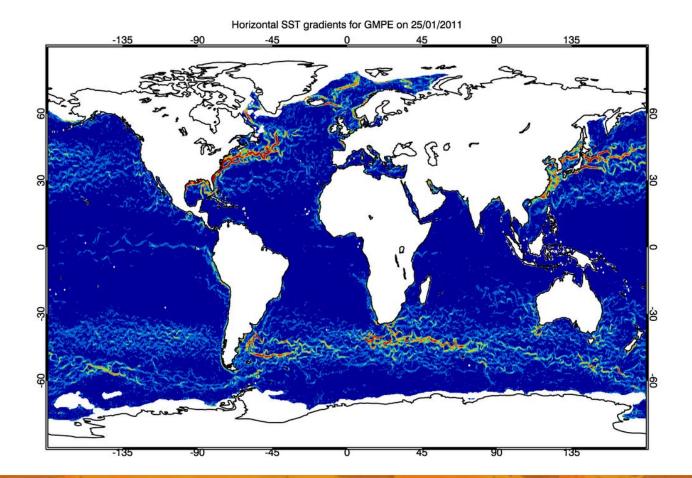
Ancillary information in L2P products: dynamic flags



http://www.ghrsst.org

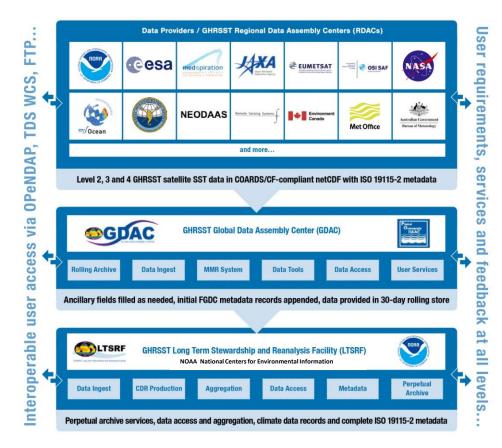
Example L3S: Multiple sensors SST_{foundation}

my Ocean



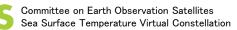
http://www.ghrsst.org

Example L4: GHRSST Multi-Product Ensemble (GMPE)



http://www.ghrsst.org

Regional/Global Task Sharing

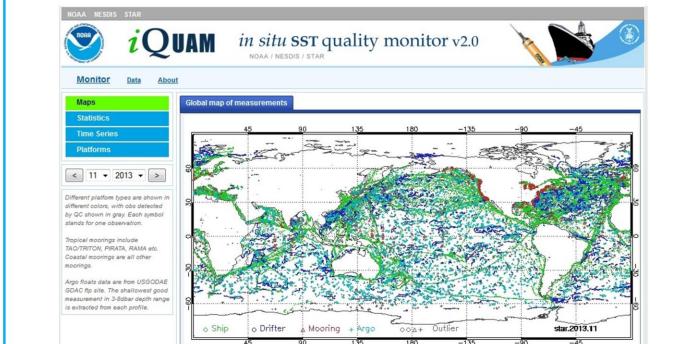

- GHRSST products generated by RDACs
 - Some RDACs are self-serve
- GHRSST offers to serve data on-behalf of RDACs
 - Optional step but recommended
 - Additional metadata for discovery services
- Real time
 - Global Data Assembly Centre (GDAC)
 - Primary system hosted by NASA JPL
 - See <u>http://podaac.jpl.nasa.gov/</u>
 - Secondary system hosted by Ifremer
 - See <u>http://cersat.ifremer.fr/data/collections/ghrsst</u> (requires simple registration)
 - Not all datasets are mirrored
 - Delayed mode
 - Long-term Stewardship and Reanalysis Facility (LTSRF)
 - Hosted by NOAA NODC
 - See http://data.nodc.noaa.gov/ghrsst/
- Data can be accessed using many methods
 - ftp, http, DAP, WMS, WCS, LAS, Geoportal, Granules, CWI
- Any issues
 - Please contact the GHRSST Project Office (gpc@ghrsst.org)

http://www.ghrsst.org

http://www.ghrsst.org

There are some

iQuam, Felyx and


SQUAM that can

form the basis of

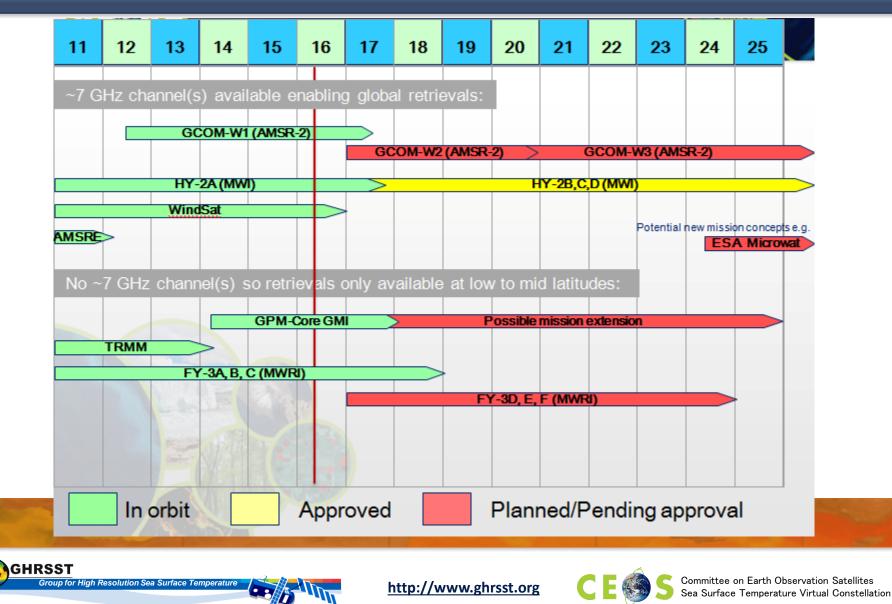
tools such as

standardised

validation

Product Validation

RSST


Group for High Resolution Sea Surface Temperature

GHRSST exploits online monitoring systems to access quality controlled • in situ data for validation and use in L4 analyses

PMW Constellation for SST

Concerns about Future PMW SST Continuities

- Use of Passive Microwave Radiometers (PMW) for SST retrievals is an essential component of global constellation of SST sensors.
- Provides temperature of ocean under clouds, not possible from infrared sensors, albeit with coarser spatial resolution.
- Particularly important in high-latitude regions and in areas of extensive and persistent cloud cover or in case of a large volcanic event.
- Uncertain future for PMW SSTs, especially at high latitudes where the PMW SSTs provide valuable through-cloud data in the region where the climate is changing most rapidly.
- The current outlook means there is a high risk of a gap, particularly for SSTs using the ~7GHz channel.
- Retrieval of PMW sea surface wind speed mainly uses 36-GHz channels, but that of all-weather sea surface wind speed uses both ~7- and ~11-GHz channels.

Summary

• GHRSST mission: To provide satellite-derived global SSTs with good estimates of uncertainty to operational users and the science community.

- The provision of SST data by GHRSST has grown to a mature sustainable essential service.
- CEOS SST-VC provides a means for CEOS to present its needs and requirements to GHRSST and for GHRSST to present its needs directly to CEOS.
- Concerns regarding PMW observation continuities were presented by SST-VC at the CEOS SIT meeting in April, and will be presented at the CGMS in June 2016.
- GHRSST and SST-VC seek possible collaborations and synergies with IOVWST and OSVW-VC activities. We need coordinated efforts on data continuity of PMW.

GHRSST Future Meeting Dates

- GHRSST-XVII
 - Near Washington DC, USA, 6th 10th June 2016
- GHRSST-XVIII
 - Qingdao, China, 5th 9th June 2017
- GHRSST-XIX
 - Darmstadt, Germany, 4th 8th June 2018

