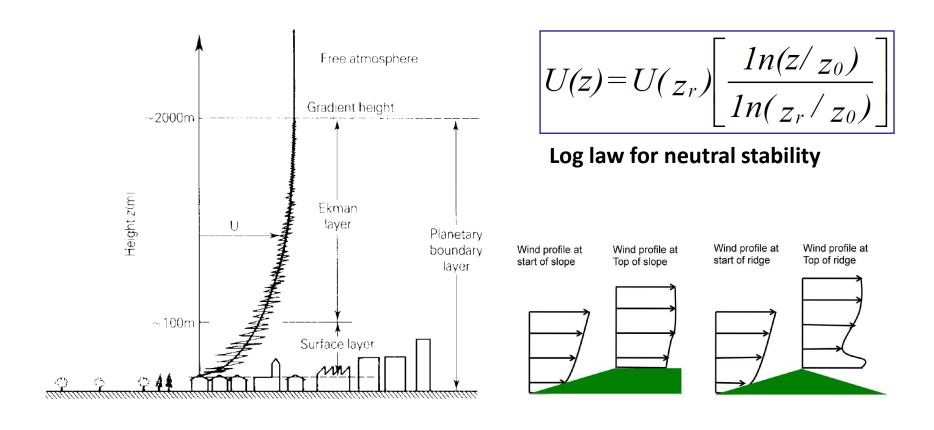


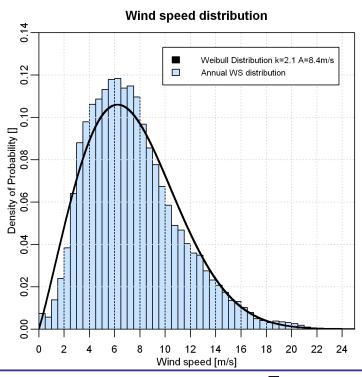
Alberto Rabaneda
Dr. Matthew Stickland
University of Strathclyde
Mechanical and Aerospace Engineering Department

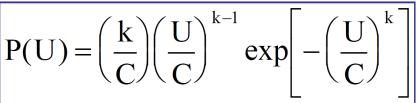
1. Wind monitoring

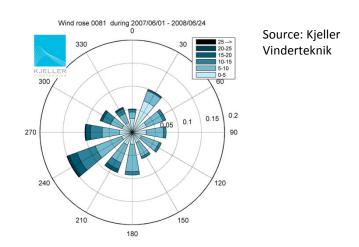
Date	Time	V80m	V40m	Dir80m	Dir40m	
01/01/2007	00:00:00	9.22	8.55	221	225	
01/01/2007	00:10:00	9.27	8.24	219	228	
01/01/2007	00:20:00	8.6	7.59	217	229	
01/01/2007	00:30:00	9.29	8.14	215	231	
01/01/2007	00:40:00	9.65	8.69	219	226	
01/01/2007	00:50:00	9.96	9.12	221	225	
01/01/2007	01:00:00	8.72	7.88	221	226	
01/01/2007	01:10:00	9.41	8.65	215	232	
31/12/2007	23:10:00	1.76	1.33	89	37	
31/12/2007	23:20:00	2.05	1.86	96	350	
31/12/2007	23:30:00	2.17	1.57	101	346	
31/12/2007	23:40:00	1.95	1.64	96	346	
31/12/2007	23:50:00	1.9	1.59	96	346	


Around 52,500 in-situ measurements at 2 to 5 different heights per year

Source: DNV GL

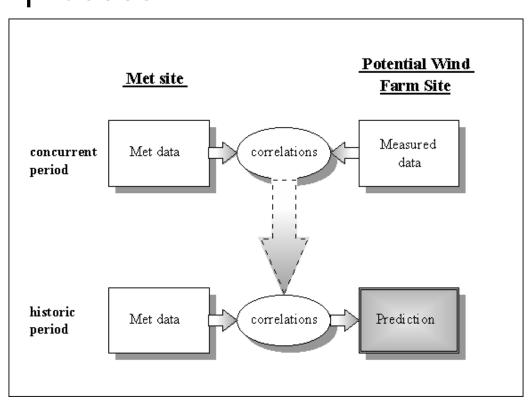



2. Hub height resource estimation



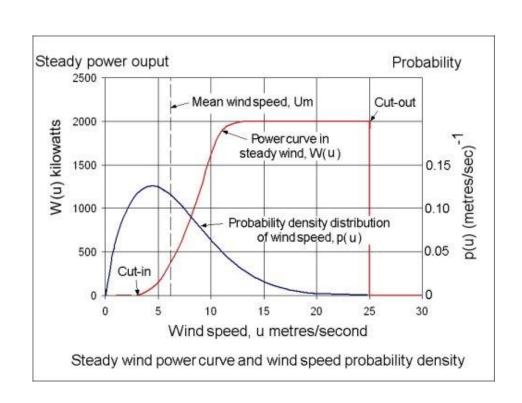
3. Wind resource characterisation

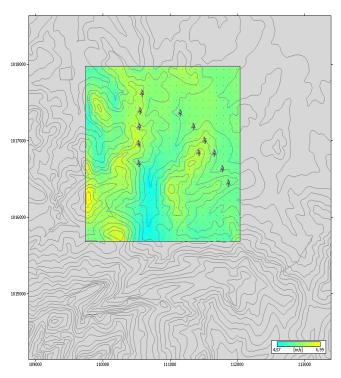
Don't forget temporal variation:


- Inter-annual
- Seasonal variation
- Diurnal variation
- Short-term (gust, turbulence)

4. Climate adjustment process

Assumption:


Wind resource is going to be similar to the past



MCP process to reduce uncertainty

6. Wind energy yield and micro-sitting

Onshore micrositting by WAsP

Software design

1. Database

- 1st block is to transform and insert data from datasets to database tables
- Database composed by 1200 tables, one for each UTM square.

2. Addition of datasets from in-situ measurements

- Optional
- Offshore met masts or LIDAR's.

3. Filtering data

Rain rate, time zone, satellites to work with, etc.

I. Vertical wind extrapolation

Satellite hub height resource estimation

$$U(z) = \frac{U^*}{k} \left[\ln(z/z_0) + \Psi_s(z/L_s) \right] \qquad z \rangle\rangle_{z_0}$$

Rewritten equation

$$U(z) = \frac{U_*}{k} \left[\ln \left(\frac{z}{z_0} \right) - \Psi_m \right]$$

$$U(z) = \frac{U_*}{k} \left[\ln \left(\frac{z}{z_0} \right) \right]$$

Neutral winds at 10 m over the sea

2 measurements at different heights required

$$U(z) = U(z_r) \left[\frac{\ln(z/z_0)}{\ln(z_r/z_0)} \right]$$

I. Vertical wind extrapolation

1st methodology – Neutral stability

$$U(z) = \frac{U_*}{k} \left[\ln \left(\frac{z}{z_0} \right) \right]$$

$$z_0 = \alpha_c \frac{U_*^2}{g}$$

- 1. Calculate U* and z₀ at 10 m
- 2. Calculate U when z is the hub height

2 unknowns with 2 equations Long or short terms

I. Vertical wind extrapolation

2nd methodology – Stability correction

$$U(z) = \frac{U_*}{k} \left[\ln \left(\frac{z}{z_0} \right) \right]$$

$$z_0 = \alpha_c \frac{U_*^2}{g}$$

- 1. Calculate U^* and z_0 at 10 m
- 2. Calculate U when z is the hub height applying stability correction

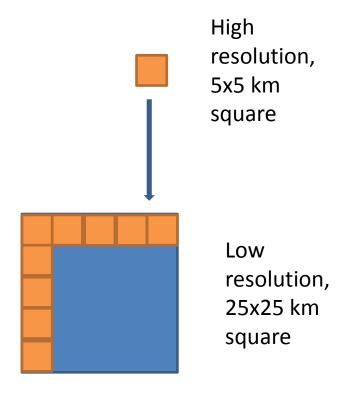
$$U(z) = \frac{U_*}{k} \left[\ln \left(\frac{z}{z_0} \right) - \Psi_m \right]$$

2 unknowns with 2 equations Long or short terms

Air temperature

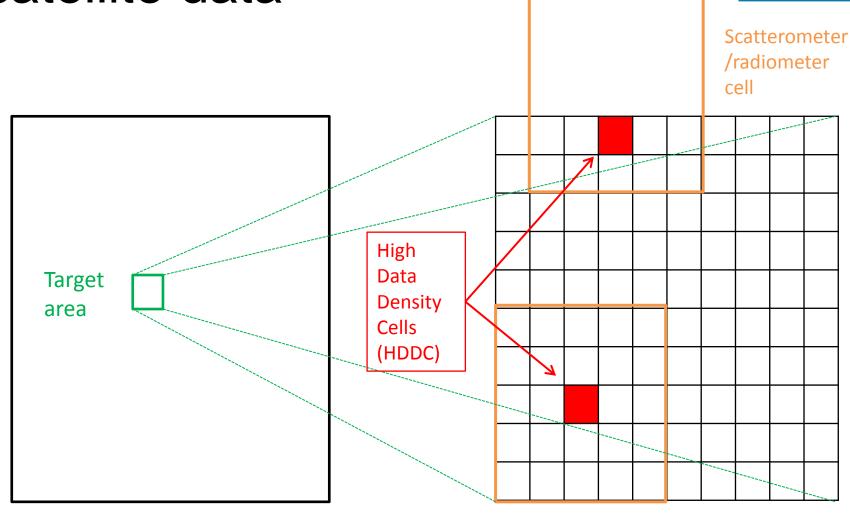
Friction velocity

Vertical heat flux



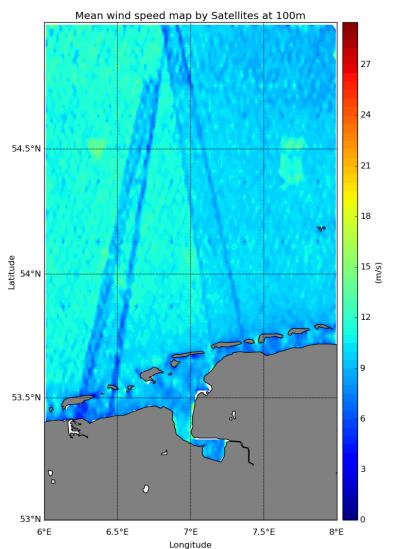
From Numerical Weather Prediction model

II. Combining different satellite data



- Combine data at different resolutions:
 - 2*2 km (SAR data)
 - 12.5*12.5 km
 - 25*25 km (most common)
- Calculate the average for each point of the grid

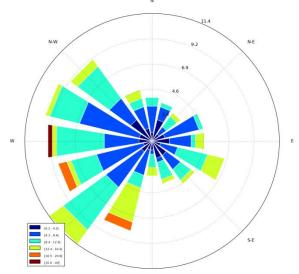
II. Combining different satellite data

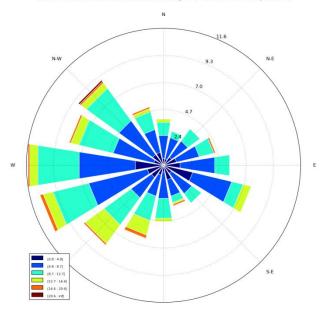


UTM square

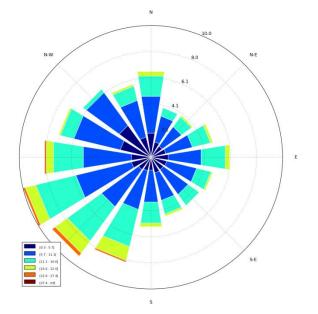
SAR grid

Wind map vs data density map



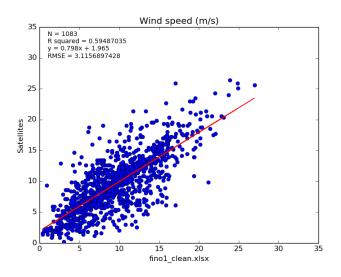


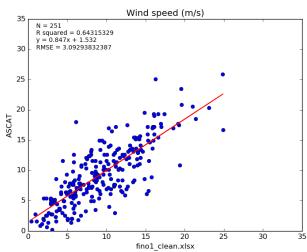
Wind roses

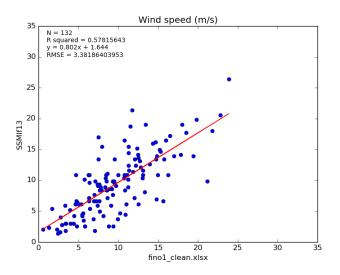


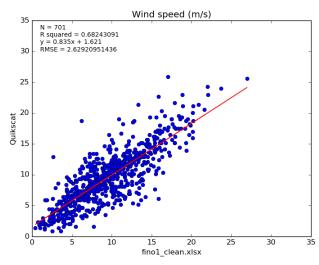
Wind statistics at 100m and at 6.63/54.13 during 2004-01-01:2011-11-30 by Quikscat

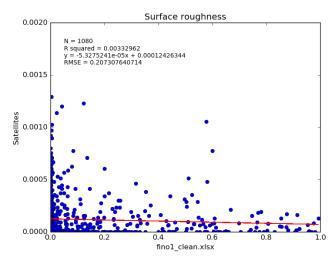
atistics at 100m and at 6.59/53.99 during 2004-01-01:2011-11-30 by fino1_clean.xlsx

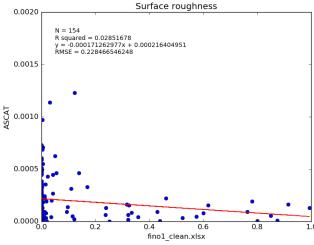


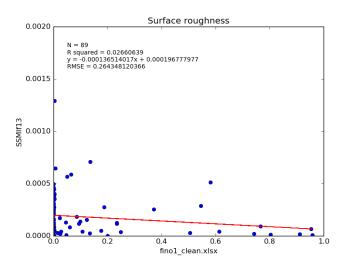

Table of parameters

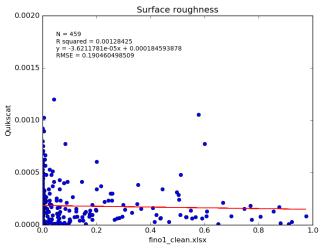

			U _{10/30}	U ₁₀₀	K	С	σ	z ₀	N
	OVERALL	FINO1	8.099	9.406	2.19	10.621	4.57	0.000391	>350000
OVERLAPPING	LONG TERM	Quikscat/FINO1	7.9/2.27%	9.499/-0.99%	2.885/-25.1%	10.645/-0.26%	3.577/17.9%	0.000113	708
		ASCAT/FINO1	7.85/5.15%	9.428/-0.23%	2.526/-18.2%	10.624/-0.03%	4.017/14.0%	0.000111	254
		SSMIf13/FINO1	7.68/3.76%	9.217/2.0%	2.463/-15.2%	10.391/2.16%	4.02/14.0%	0.000105	133
	SHORT TERM	Quikscat/FINO1	7.9/2.27%	9.544/-1.35%	2.278/-2.38%	10.774/-1.33%	4.471/0.84%	0.000156	708
		ASCAT/FINO1	7.85/5.14%	9.49/-2.26%	1.998/1.43%	10.7/-2.17%	5.016/-3.63%	0.00165	254
		SSMIf13/FINO1	7.68/3.8%	9.278/1.79%	1.95/7.1%	10.463/1.88%	5.015/-2.78%	0.000159	135

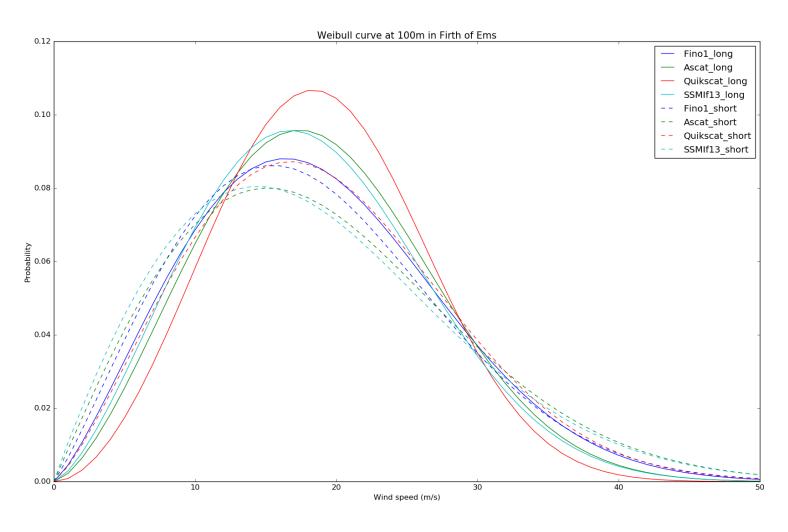

Regression








Regression



Weibull curves

Summary

- Wind industry uses to handle over 300,000 measurements to parametize wind with accuracy; being mean wind speed at hub height and Weibull parameters the most important.
- In order to achieve similar accuracy with satellites, it is necessary to include as many devices as possible.
- Despite the distance in time and space, the met mast and different satellites achieved similar parameters after processing.
- While long-term extrapolation gives better mean wind speed values at hub height; short-term gives better Weibull parameters.

Wind map quality depends on data density which depends on the database.

Further development

- Addition of atmospheric stability correction for vertical extrapolation
- Calculate surface roughness according sea waves instead of as a function of neutral wind speed.
 - Convert tool into a cloud-based software.
- Use satellite data as historical data in Measure-Correlation-Prediction method. Satellites as complement of in-situ measurements such as floating LIDAR's.
 - Possible of inclusion of GNSS-Reflectometry.

Satellite wind measurements CAN BE a big cost reduction for offshore wind industry

