Evaluation of the Ocean Surface Winds From Reanalyses in the Nordic Seas

Dmitry Dukhovskoy, Mark Bourassa, John Steffen

Center for Ocean-Atmospheric Prediction Studies, Florida State University

Guðrún Nína Petersen Icelandic Meteorological Office

Acknowledgment: The study is funded by the NASA OVWST & ONR NOPP. This work was supported by a grant of computer time from the DoD High Performance Computing Modernization Program at NRL SSC.

Research Goals, Objectives, Approaches

National Center for Environmental Prediction Reanalysis II (NCEP/ DOE) NCEP Climate Forecast System Reanalysis (CFSR) Arctic System Reanalysis (ASR) Cross-Calibrated Multi-Platform Ocean Surface Wind Components (CCMP v1.1)

Evaluate uncertainty in the wind forcing data sets and assess the influence of the discrepancies on the Arctic Ocean models

Wind comparison at different spatial and temporal scales, 2000-2009:

- Climatology, seasonality, synoptic events
- Basin-scale circulation, mesoscale, sub-mesoscale

Approach:

- Intercomparison of wind data sets and comparison to RSS QuikSCAT
- Comparison to meteorological buoy observations
- Sensitivity numerical experiments with different wind data sets

Spatial Eigenvectors of the 1st EOF and Principal Components of the Area-Mean Vorticity

Bourassa and Ford, JAOT, 2010:

$$C = \oint \mathbf{v} \cdot d\mathbf{l} \qquad \zeta = \frac{C}{A}.$$

Diameter of the closed cells is 200 km

- NCEPR has higher probability of strong winds in winter (> 15 m/s) than the other wind data
- Probability of the low winds (<2.5 m/s) is markedly higher in the NCEPR compared to the other data sets
- The probability and magnitude of the northern winds in winter are too high in the NCERP
- Directional statistics of summer winds for QuikSCAT looks noticeably different. This has not been observed in other analyzed regions (ice contamination due to proximity to the ice edge?)

Example 7 Cyclone Tracking from the Wind Vorticity (ζ) and Speed Fields

Tracking criteria:

- $\zeta \ge 9e-5 s^{-1}$
- Closed ζ contour of a near-circular shape
- Inside the closed ζ contour, there exists local speed minimum
- Max ζ ~ coincides with local speed minimum

ASR, Wind Vorticity x 1e5, s⁻¹

ASR, Wind Speed, m/s

-13 -11 -9 -7 -5 -3 -1 1 3 5 7 9 11 13 15 7 9 11 13 15 17 19 21 23 25 27 29 31 33 38

Cyclone Counts

Cyclone Statistics

PDFs of CycloneWind Speed

PDFs of Integrated KE of Cyclones

Comparison with Iceland Sea Buoy Data

10

0

5

10

ASR

25

30

20

10

15

ASR

10

n

Mean Dist. to grid

Only considered are QuikSCAT data that were within the 20minute interval about the time of the buoy observation

