Progress in Calculating Tropical Cyclone Surface Wind Inflow from OVW Observations

Ralph Foster, APL, University of Washington, Seattle, WA Jun Zhang, HRD, NOAA, Miami, FL Peter Black, Salinas, CA

> IOVWST meeting, 17-19 May, 2015, Sapporo Japan Research supported by NASA: Ocean Vector Winds Science Team

QuikSCAT Neural Net GMF for Tropical Cyclones

- <u>Speed-only</u> TC Geophysical Model Function
 - 10 years of data at JPL:

http://tropicalcyclone.jpl.sa.gov/hurricane/gemain.jsp

- NN trained against 2005 H*WIND
 - Stiles BW, RE. Danielson, W. Lee Poulsen, M J. Brennan, S. Hristova-Veleva, T-P.J. Shen, and A. G. Fore: 2013: Optimized Tropical Cyclone Winds from QuikSCAT: A Neural Network Approach, *TGARRS*, Doi 10.1109/TGRS.2014.2312333
- 12.5 km pixels
- Rain contamination reduced or removed

¹Zhang, J. A., and E. W. Uhlhorn, 2012: Hurricane sea surface inflow angle and an observation-based parametric model. *Mon. Wea. Rev.*, **140**, 3587-3605

Navigating Aircraft to Satellite Image

- Matchups between flights and images are somewhat rare
 - Need to make best use of each matchup
 - 6 to 8 hour flight duration (multi-hour ΔT)
 - Intensity may change during these intervals
- HRD recommends using "TRAK" files
 - Cubic-Spline fit through aircraft and Best Track centers

Largest Source of Error in Sonde Sea-Level Pressure Validation is ...

- Inaccurate determination of storm track
- Aircraft centers are not exact and may not represent surface wind circulation
- Best Track locations are not intended to represent actual storm location at specified times
- HRD TRAK files:
 - Must pass through center fixes
 - Must match slopes at center fixes
 - Results in spurious track deviations

Improved Storm Track Determination

- Two competing methods
- Black: Piecewise polynomial fit
 - aircraft observations
 - ARCHER center fixes
 - Automated Rotational Center Eye Retrieval (microwave)
 - CIMSS by Wimmers and Velden (2010, 2015).
- Foster: p-splines
 - Aircraft only (ARCHER to be added)
 - p=0 \rightarrow least-squares line
 - P=1 \rightarrow cubic spline
 - Best collapse of pressure difference
 - observations vs. OVW-derived

Least Squares fit to ARCHER and HRD aircraft fix data for 48-hour period bracketing 28 August, 2005, 1100 GMT. 15-hour sub-sample beginning on 28 August, 0600 GMT (right), provides a polynomial fit to both latitude surrounding the SAR overpass time.

Validate against pressure difference between pairs of drop sondes

Wind Direction Assumption (All use QSNN speed)	SFMR (SLP-filtered) (m s ⁻¹)	P-3 Flight- Level SLP Calculation (mb)	Sonde SLP (mb)	Sonde SLP pair-wise pressure differences (mb)
Ku2010	6.2	10.0	8.6	12.2
H*WIND	4.9	3.4	4.3	6.0
Zhang- Uhlhorn	4.9	3.1	4.7	6.7
Single Iteration	4.7	2.8	3.5	3.3

Wind Partitioning

- Estimate non-divergent & irrotational parts of flow in a limited domain
 - Non-divergent: surface signature of *primary* circulation
 - Irrotational: surface signature of <u>secondary</u> circulation
 - Potentially more informative than standard radial/azimuthal flow partitioning
- Residual is non-divergent and irrotational **deformation** flow

- Surface signature of external influence on local flow

• Bishop, C H., 1996: Domain-Independent Attribution. Part I: Reconstructing the wind from estimates of vorticity and divergence using free space Green's functions. *J. Atmos. Sci.*, **53**, 241–252.

Bill (2009)

Deformation 'col' near circulation center

- Use flow partition analysis & SLP data to refine estimates of surface-level circulation center
- Best fit to SLP obs
- Find flow partition metrics e.g.:
 - Maximize circulation near RMW
 - Location of deformation 'col'

Bill (2009)

Current Work

- Developing improved storm tracks for all of our matchups
 - Best method wins!
 - Include "ARCHER" storm centers in Foster's method
- Extract U_{10}^{N} from profiles
- Fitting surface wind directions
 - Exploit flow partitioning

Summary

- Given accurate wind directions, accurate SLP patterns can be derived from TC NN wind speeds
 - Use collocations to develop inflow angle parameterization
- Correct location of in situ data is crucial
- Flow partitioning extracts surface signature of TC secondary circulation
- Deformation "col" location may help identify TC surface circulation center

Why do Multi-scale Rolls Form in Hurricane PBL?

- Well-observed O(300 m) wavelength rolls
 (e.g., Wurman and Winslow, 1998)
- Interact with 'classic' O(2 km) wavelength rolls
 (e.g., Morrison et al. 2005; Lorsolo et al., 2009)
- Ubiquitous SAR signature O(10 km) rolls
 (e.g. Foster, 2013; Gall et al. 1998 (?))

Estimating U10N from Sondes

- New technique: fit Monin-Obukhov profiles to near-surface profile (new generation sondes)
 - Inherent assumption: each measurement in the sonde profile is independent
- Temperature always follows M-O
 - Buoyancy continuously adjusts
 - Wind and humidity frequently deviate from M-O
- Wind and humidity deviations anti-correlate
 - Signature of near-surface overturning flow that is coupled to surface streaks
 - Association of streaks with intermittent flux eddies
 - Ejections (sweeps) form in the updraft (downdraft) bands associated with streaks
 - Maintain the surface stress
 - Modification of estimated mean wind is real, but likely smaller scale than SAR pixels
 - Larger-scale rolls also introduce local mean wind perturbations

Near-surface overturning flow signature: Higher $U_{10} \uparrow$, $q \downarrow$ or $U_{10} \downarrow$, $q \uparrow$

<u>Preliminary</u> navigation of drop sondes

Hurricane Earl, 1 Sep, 2010

Note: OceanSAT, not QuikSCAT

OSCAT Directions

Motivation

- Synthetic Aperture Radar for Tropical Cyclones
 - Pros:
 - Very high resolution (~1km)
 - Very reliable OVW retrievals
 - Cons:
 - Non-continuous retrievals
 - Need to schedule ~24 hrs in advance
- Scatterometers for Tropical Cyclones
 - Pros:
 - Wide swath
 - Continuous retrieval
 - Long data record, e.g.
 - 10-years QuikSCAT (NASA)
 - 2-years RapidSCAT (NASA)
 - 2-years OceanSCAT (India)
 - Upcoming HY-2 (China)
 - ASCAT (ESA; dual narrow swath)
 - Cons:
 - Coarser-resolution (~12 km)
 - Serious rain contamination for Ku-band