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Overview:

- Satellite observations numerical modeling of SST influence on sea surface winds
- Semi-analytical analysis of the UKMO planetary boundary layer parameterizations
- 1-D WRF simulations versus UKMO PBL results

- Summary
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2-Month Average Wind Stress Magnitude
(Spatially High-Pass Filtered)

QuikSCAT, January—February 2003
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2-Month Average Wind Stress Magnitude and SST
(Spatially High-Pass Filtered)

QuikSCAT, January—February 2003
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2-Month Average Wind Stress Magnitude and SST
(Spatially High-Pass Filtered)

QuikSCAT, January—February 2003 QuikSCAT, July—August 2003
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45N ,—;wil 45N

80w 60W 40W 80w 60W 40W

SO0 Ao U o
355 355§ 3 W . &

455 9 45s R il

555 . A 555
0 20E BOE 80E 100E "0
s C.l.=05°C
—0.06  —0.03 0.00 0.03 0.06




a)
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Agulhas Return Current (Southwest Indian Ocean)

Satellite Observations

QuikSCAT and AMSR SST
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Operational Weather Forecast Models

ECMWF and RTG SST
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Power Spectral Densities of SST and Wind Speed

SST in the ARC Region, September 2007
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U10 in the ARC Region, September 2007
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SST in the ARC Region, October 2007
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March 2007: UKMO change of ver-
tical mixing to non-local.

October 2007: SST boundary con-
ditions change from Met Office SST
to OSTIA.

Objectives:

1. to determine if the March 2007
change improved air-sea coupling.

2. to investigate the possible rea-
sons for improvements, if any.



Maps of spatially low-pass filtered wind speed and SST

UKMO ECMWF QuickSCAT observations
UKMO, Sept. 2007, spd_avg =11.98 (m/s) ECMWEF, Sept. 2007, spd_avg =12.25 (m/s) QuikSCAT, Sept. 2007, spd_avg =12.42 (m/s)
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Maps of spatially high-pass filtered wind speed and SST

UKMO

UKMO, Sept. 2007
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Speed Perturbation, m/s

Speed Perturbation, m/s

Wind-SST coupling coefficient, 2007 in the Southern Ocean

UKMO ECMWEF QuickSCAT observations

200709 Met Office Sllope =0.19 200709 ECMWF SIIOpe = 0.22 200709 QuikSCAT SIIOpe = 0.56
1.0 - - o 1.0 - - o 1.0 -
] 1S ] 1S
05 —5 05 —5
o ] anD [ ©
o) i . 0 . | O
5 0.0 Mﬁﬂ(ﬁ_ 5
= 1 = r €
o) 1 b I ©
[a ] I o
0.5 -3 05 -3
[0 [ 4
& ] & ]
1.0 - - 1.0 4 - 1.0 4 -
] (a) t ] (b) | ] (c)
-1.5 L L LN BELENLEL L BN -1.5 L L L BN BN -1.5 L LA B BN LI B
-1.0 0.5 0.0 05 1.0 -1.0 0.5 0.0 05 1.0 1.0 -0.5 0.0 05 1.0
Met Office SST Perturbation, °C RTG SST Perturbation, °C AMSR SST Perturbation, °C
200710 Met Office Sllope = 0|.1 9 200710 ECMWF Sllope = 0|-1 7 200710 QuikSCAT Sllope = 0|-47
1.0 - o 1.0 4 F o 10 ] -
] IS ] IS ]
05 -5 05 -5 05 1
o ] IS
o] ] o ]
5 00 + -5 00
o @
] o ] [a ]
-0.5 -] - 8 -0.5 1 - 8 -0.5 1
i (o) g [0} 1
& &
1.0 - - 1.0 - - 1.0 - -
| (d) A (e) ] (f) |
-1.5 A IR I BN B B -1.5 A B I DL B B -1.5 LI R LR R B

-1.0 0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0
OSTIA SST Perturbation, °C RTG SST Perturbation, °C AMSR SST Perturbation, °C



The UKMO parameterizations of vertical mixing
In the planetary boundary layer

Briefly, the total turbulent flux is parameterized as the sum of contributions from
local mixing and nonlocal mixing:

uw' = ulwllocal + ”/W/NLa (1)

where u’ and w' are the horizontal and vertical eddy velocities, respectively. Both contributions are

implemented throughout the marine atmospheric boundary layer (MABL). The local mixing term

1s given by

Wlocal - _Km_ . (2)

The eddy diffusivity, K, is parameterized within the boundary layer as

2
K, = Wy, Kz (1—5) , 3)

<i



where wy, 1s a velocity scale, K is the von Karman constant, z is the height above the sea surface,

and z; 1s the height of the top of the MABL. The local mixing then becomes

2

<

ulwllocal = —Wnlx (1 - Z> ) 4)
i

Near the sea surface (z < 0.1z;), the velocity scale is set to w,, = [u2 +2.5(z/z;))w3]'/3, where
w, 1s the convective velocity scale that characterizes the boundary layer stability and is defined as

Wy = [? (W/ev/>s] 3 | 5)

14

where (g/0,)(w'0,’)s is the surface buoyancy flux for gravitational acceleration g and potential
temperature 0, that consists of a large-scale component 0, and an eddy component 8,’. The local
momentum mixing near the sea surface can then be written as

- . 1/3 2\ 2
UW jpeal = —Us (ui —|—2.5—wi> (1 — —) : (6)

g Zi



The magnitude of the total vertical momentum flux in Eq. (1) obtained by substituting Eq. (6)

for the local mixing term u/w’;,¢; and Eq. (3) of Brown et al. (2006) for the non-local mixing term

u'w yr has the form
1/3 3 2
Z 2. Tw Z <
u'w'| = |uy ui—|—2.5wi> fut <) (1 — > : 7
'] [ ( Z ud +0.6w3 \ z; Zi )

Next slide: the dependencies of this total vertical momentum mixing on stabili-
ty (characterized by w*) and surface wind speed (characterized by u*)



Unstable conditions
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Mixing factor
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Histograms of -z/L, w*, and u* from UKMO model simulations

Frequency

Frequency

70000

60000

50000

40000

30000

20000

10000

60000

50000

40000

30000

20000

10000

] [al|
DY B H v 0 s Yy
Unstable <--- z; /L ---> Stable
- L
o 9% 9% % 9% s a2
u*, m/s

40%

30%

20%

10%

00/0

40%

30%

20%

10%

0%

Frequency

35000

30000

25000

20000

15000

10000

5000

0.9

u*, m/s

0.6

0.3

e b b b b b b

Q

- 20%

- 16%

- 12%

~ 8%

- 4%

— 0%
O Q5 o s e O, Sy S5 @

w*, m/s ---> Unstable

0.9 1.2 15 1.8
[CONTOUR FROM 0.2% TO 1.8% BY 0.2%]

w*, m/s



3. One-dimensional WRF simulation versus UKMO
PBL results

WRF GBM PBL, released in WRF version 3.5, April, 2013.
- Grenier and Bretherton, 2001, Mon. Wea. Rev.
- Grenier and Bretherton, 2004, J. of Climate
- Qingtao Song, Dudley Chelton, Steve Esbensen, 2009, J. of Climate
- Natalie Perlin, 2012.

To make a direct comparison, the single-column WRF model was set up the same as
the LES model considered by UKMO PBL
- a constant geostrophic wind speed of 10 m s
- a boundary layer height of 1000 m
- a roughness length z, = 0.0001 m representative of boundary layer conditions
over the ocean



Modification of the Grenier and Bretherton (2001) Parameterization

of Vertical Mixing for these Sensitivity Studies

The Grenier and Bretherton (2001) parameterization enhances
the vertical transport of TKE to match the TKE profile obtained
from large-eddy simulations by formulating the vertical eddy
diffusivity as

Km — le\/g

where (),, is 5 times larger than the Mellor-Yamada mixing.

This stability dependence is modified here to have the form
Qm = SN 4+ R (5Sm — SN),

where SY is the stability function for neutrally static conditions
and the stability response factor Rs modulates the dependence of
vertical diffusion on stability.

A value of Ry = 1 corresponds to the Grenier and Bretherton
(2001) scheme. Values of Ry < 1 correspond to reduced depen-
dence of vertical mixing on stability.

31
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Dependence of u* on stabillity parameter -z/L

Thick dashed line: the LES results with non-local
mixing described in Brown and Grant (1997).

Solid lines: 1-D WRF simulations with different sta-
bility response factors Rs.

Dependence of rate of change of frictional
velocity u*on stabillity parameter -z /L



Conclusions

SST exerts a strong influence on surface winds. OSTIA SST analyses are far
superior to the old UKMO SST fields

The parameterization of vertical mixing in the surface layer appears to hold
the key to understanding the discrepancies between modeled and observed
surface wind response to SST.

For unstable conditions, the 1-D WRF simulations indicate that the UKMO
mixing sensitivity to stability is only about half of what is required to represent
the satellite observations of surface wind speed response to SST™.

Further enhancements of vertical mixing beyond that of the UKMO BG97
parameterization are required in the weak-to-moderately unstable conditions
in order for the UKMO and ECMWF models to represent the surface wind
response to SST accurately.

*Manuscript submitted to J. of Climate: Qingtao Song, Dudley Chelton, Steve Esbensen, and
Andrew Brown, 2016, An Investigation of the Stability Dependence of SST-Induced Vertical Mixing
Over the Ocean in the Operational U.K. Met Office Model (under revision).





