RapidScat Along Coasts and in Hurricanes

Bryan Stiles, Alex Fore, Sermsak Jaruwatanadilok, and Ernesto Rodriguez

May 20, 2015
Description of Improved Rain Correction for RapidScat
- Hybrid of current correction and hurricane processing

Change Statistics

Hagupit Example

Comparison with WindSAT all-weather data
- See Meissner 2009 for validation of WindSAT data

Comparison with drop-wind-sondes.
- Dropsondes are the most direct validation for high winds but they are sparse.

Comparison with best tracks
- A simple technique was applied QuikSCAT high winds to estimate maximum intensities for each storm scene.
- QuikScat intensity estimates compared favorably with the best track
- We apply the QuikSCAT technique to RapidScat winds to check for consistency

Conclusions

Plans for Future Work

References
The version 3 QuikSCAT and version 1.0 RapidScat wind speeds were corrected for rain using an neural network that estimated speed as a function of the four flavors of normalized radar cross section (NRCS) and the DIRTH speed. [Stiles and Dunbar 2010].

- Neural Network was trained using global wind speed distribution, so high winds were not well represented in training set. Brightness temperatures were not utilized.
- Correction was only applied when rain was detected. (Rain Impact Quantity > 2.5)
- No correction in outer swath, uncorrected speed is reported as the corrected speed.

Version 1.1 RapiScat wind speeds are corrected for rain using a combination of the [Stiles and Dunbar 2010] (speed1) and [Stiles et al 2014] tropical cyclone neural networks (speed2)

- Correction is still only applied when rain was detected. (Rain Impact Quantity > 2.5)
- Still no correction in outer swath, but now if the IMUDH flag says outer swath data is rainy the corrected speed is set to a fill value (-9999) to avoid claiming something is corrected when it is not.
- If speed2 is < 10 m/s speed1 is the corrected speed.
- If speed2 is > 20 m/s speed2 is the corrected speed.
- If 10<= speed 2 <=20, the corrected speed is a weighted liner sum of speed1 and speed2.
The improvement in the rain correction affects a small portions of the retrieved winds because

1. Neither rain correction is applied unless rain is detected.

2. A hybrid of the hurricane and global rain correction is applied resulting in little change for low to moderate winds.
Comparison With WindSAT

The WindSAT all-weather wind speed product [Meissner 2009] was developed and validated using HRD H*WINDS data, SFMR, and dropsondes, similarly to the QuikSCAT tropical cyclone product [Stiles 2014].

- Here we compare the RapidScat product to WindSAT.
- WindSAT response to wind is presumed to extend linearly to the highest speeds if this assumption is wrong the highest winds would likely be underestimated.
- WindSAT does not retrieve winds over 50 m/s.

Method

- Bin data by average of RapidScat and WindSAT speeds
- Bias = mean (RapidScat-WindSAT) for each bin
- STD = standard deviation of (RapidScat-WindSAT) for each bin
- X-axis of solid line plots plots is speed bin – ½ Bias.
- Y-axis of solid line plots is speed bin + ½ Bias.
- Dashed line plots are error bars +/- ½ STD for x and +/- ½ STD for y.
- Data was colocated within 30 minutes.
- First look at data where new and old speed corrections are the same.
- Second look at only data where new and old speed corrections differ by more than 0.1 m/s
- Only data in the dual-beam RapidScat swath is considered.
Comparison with Windsat (Unchanged data)
Comparison with Windsat (Changed data)
Comparison to WindSAT, moderate rain

- 1 mm/hr < WindSAT Rain Rate <= 3 mm/hr
- 3 mm/hr < WindSAT Rain Rate <= 5 mm/hr

Graphs showing the comparison between RapidScat and WindSAT speeds under moderate rain conditions.
GPS Dropwindsonde Comparison

Dropsondes are the ideal validation candidate but:

- Only 30 usable drops were found in the RapidScat time period.
- No 2015 drops available yet; used Ana and Gonzalo drops only.

Method:

- Obtained GPS dropwindsonde data from NOAA/AOML Hurricane Research Division Website
- Utilized dropsonde “surface” winds the 1070 mb winds in the has format data.
- Compared to RapidScat data within 6 hours.
- Chose closest 12.5-km RapidScat wind vector to dropsonde location
- Eliminated dropsonde data closest to storm center due to difference between area average winds and point measurement in region of highest gradient.
- Approximately 30 dropsondes are collocated.
Few dropsondes to compare with RapidScat so far.

If we restrict ourselves to more than 50 km from storm center as we did for QuikSCAT dropsonde comparisons, there is only one high speed case.

Most dropsondes are not in rain-contaminated regions.
If we do comparisons to within 25 km of storm center, we predictably get more outliers due to steeper gradients.

We also get a few higher speed cases.

The circled cases are shown in more detail in following slides.
Intensity Estimator: QuikSCAT ANN Stats

- Technique:
 - Compute average of wind vectors in concentric circles about center.
 - Take maximal average value.
 - Multiply by 1.4 to account for reduced resolution

- Reduces occurrence of outliers substantially
Intensity Estimator: RapidScat Stats, 255 cases

- Technique:
 - Compute average of wind vectors in concentric circles about center from 50-200km radius.
 - Take maximal average value.
 - Multiply by 1.4 to account for reduced resolution

- As with QuikSCAT we omit
 - Outer beam only region at swath edge — no correction
 - Storms more than 40 deg from equator, highest winds can be far from center
 - Storms where less half half of 200-km radius circle was observed
Intensity Estimator: RapidScat Stats

V1.1 improves upon V1.0 correction at high winds.

Improves upon no correction at low winds.

RapidScat biased low for winds greater than 40 m/s

Same technique applied to QuikSCAT follows one-to-one line up to 70 m/s
Intensity Estimator: RapidScat Stats

Applying a simple histogram match can improve correspondence between RapidScat intensity estimate and best track.
Conclusions

- V1.1 rain correction is significant improvement over version 1.0 in high winds and rain.
- Best track comparisons suggest RapidScat winds are biased low vs. QuikSCAT for the highest wind speeds.
- RapidScat and WindSAT all weather speeds compare favorably up to the highest observed speeds.
- Dropwindsonde comparisons are inconclusive due to lack of data.

Future work

- Compare QuikSCAT data with WindSAT
- Compare RapidScat data with more dropwindsondes as they become available
- Compare RapidScat with SMAP winds as they become available
- Compare RapidScat and QuikSCAT with NOAA STAR’s newest consistent SFMR data set.
References

VongFong Best Track compared to RapidScat Maximum Speed with 200-km

VONGFONG

- Best Track Speed
- Uncorr, MAE=13.16 m/s, Bias=-9.88 m/s
- Old Corr, MAE=14.00 m/s, Bias=-10.73 m/s
- New Corr, MAE=9.53 m/s, Bias=-5.28 m/s
- Stiles2014, MAE=11.05 m/s, Bias=-4.25 m/s

Storm Intensity (m/s)

Days since 01-Oct-2014
Hagupit Best Track compared to RapidScat Maximum Speed with 200-km

![Graph showing Hagupit's storm intensity over days since 29-Nov-2014 12:00:00, with markers for different corrections and their MAE and Bias values.]

- **Best Track Speed**:
 - Uncorr, MAE=11.86 m/s, Bias=6.29 m/s
 - Old Corr, MAE=9.27 m/s, Bias=0.26 m/s
 - New Corr, MAE=8.46 m/s, Bias=2.55 m/s
 - Stiles2014, MAE=7.22 m/s, Bias=0.18 m/s
Pam Best Track compared to RapidScat Maximum Speed with 200-km

PAM

Best Track Speed
Uncorr, MAE=13.13 m/s, Bias=-2.58 m/s
Old Corr, MAE=12.10 m/s, Bias=-7.56 m/s
New Corr, MAE=11.57 m/s, Bias=-2.47 m/s
Stiles2014, MAE=11.58 m/s, Bias=-2.47 m/s
Nuri Best Track compared to RapidScat Maximum Speed with 200-km

![Graph showing storm intensity over time with different markers for Uncorr, Old Corr, New Corr, and Stiles2014]
Noul Best Track compared to RapidScat Maximum Speed with 200-km

- Best Track Speed
- Uncorr, MAE=18.13 m/s, Bias=14.79 m/s
- Old Corr, MAE=8.17 m/s, Bias=-1.37 m/s
- New Corr, MAE=9.20 m/s, Bias=5.94 m/s
- Stiles2014, MAE=7.99 m/s, Bias=4.73 m/s

Storm Intensity (m/s)

Days since 30-Apr-2015 06:00:00
Maysak Best Track compared to RapidScat Maximum Speed with 200-km

![Graph showing storm intensity vs. days since 23-Mar-2015 06:00:00]

- **Best Track Speed**
- **Uncorr, MAE=16.95 m/s, Bias=-1.50 m/s**
- **Old Corr, MAE=13.01 m/s, Bias=-5.75 m/s**
- **New Corr, MAE=12.18 m/s, Bias=-4.91 m/s**
- **Stiles2014, MAE=12.31 m/s, Bias=-7.52 m/s**
Kate Best Track compared to RapidScat Maximum Speed with 200-km

![Graph showing storm intensity over days with various markers representing different speed corrections and their biases and MAE values.](image)

- Best Track Speed
- Uncorr, MAE=9.81 m/s, Bias=4.50 m/s
- Old Corr, MAE=9.14 m/s, Bias=1.48 m/s
- New Corr, MAE=9.14 m/s, Bias=1.48 m/s
- Stiles2014, MAE=7.86 m/s, Bias=-1.90 m/s

Days since 22-Dec-2014 12:00:00

Storm intensity (m/s)
Hudhud Best Track compared to RapidScat Maximum Speed with 200-km

HUDHUD

- Best Track Speed
- Uncorr, MAE=17.95 m/s, Bias=0.84 m/s
- Old Corr, MAE=14.63 m/s, Bias=-2.48 m/s
- New Corr, MAE=14.25 m/s, Bias=-2.09 m/s
- Stiles2014, MAE=11.39 m/s, Bias=-3.08 m/s

Storm Intensity (m/s)

Days since 05-Oct-2014 12:00:00
Gonzalo Best Track compared to RapidScat Maximum Speed with 200-km

Storm Intensity (m/s) vs. Days since 10-Oct-2014 12:00:00

- Best Track Speed
- Uncorr, MAE=9.44 m/s, Bias=-3.72 m/s
- Old Corr, MAE=9.15 m/s, Bias=-5.57 m/s
- New Corr, MAE=11.09 m/s, Bias=-2.05 m/s
- Stiles2014, MAE=10.69 m/s, Bias=-3.96 m/s
The maximum speed was 19.6 m/s.

Uncorrected speeds were much higher than best track.

Dropsonde location X was near a sharp transition in speed.

The correction makes a big difference but not near the dropsonde.
Best track maximum speed was 36 m/s.

Dropsonde measured 32 m/s.

Uncorrected speed at dropsonde was 21.5 m/s.

Old correction was 11.6 m/s.

New correction was 22 m/s.
Best track maximum speed was 36 m/s.

Dropsonde measured 32 m/s.

Uncorrected speed nearest dropsonde was 21.5 m/s.

Old correction was 11.6 m/s.

New correction was 22 m/s.

\[X = \text{dropsonde location} \]
\[O = \text{best track center} \]
Validation: QuikSCAT

a) 38 Validation Scenes (22 with H^*Wind)

<table>
<thead>
<tr>
<th>vs SFMR</th>
<th>N</th>
<th>MBE</th>
<th>MAE</th>
</tr>
</thead>
<tbody>
<tr>
<td>NNet</td>
<td>2390</td>
<td>1.7</td>
<td>3.5</td>
</tr>
<tr>
<td>H^*Wind</td>
<td>1577</td>
<td>2.0</td>
<td>3.5</td>
</tr>
</tbody>
</table>

b) 59 Validation Scenes (30 with H^*Wind)

<table>
<thead>
<tr>
<th>vs GPS</th>
<th>N</th>
<th>MBE</th>
<th>MAE</th>
</tr>
</thead>
<tbody>
<tr>
<td>NNet</td>
<td>256</td>
<td>1.5</td>
<td>3.1</td>
</tr>
<tr>
<td>H^*Wind</td>
<td>150</td>
<td>0.7</td>
<td>3.3</td>
</tr>
</tbody>
</table>

IOVWST, 2013, Multi-Scatterometer Hurricane Winds
Computed bias as a function of speed needed to add to each of three data sets in order to match the histograms of the other two.

Used ECWMF, WindSAT, and RapidScat (new and old correction)

WindSAT and RapidScat colocated within 30 minutes.

ECMWF interpolated in time to match RapidScat observation time.
WindSAT and RapidScat new correction histogram matched biases w.r.t. ECMWF agree well up to 40 m/s (WindSAT/Rapid Scat) speeds.
Comparison with WindSAT using ECWMF* binning

- Computed ECMWF* winds by applying the histogram matching biases to make the ECMWF histogram match WindSAT’s.
- Binned data by ECMWF* wind speed and WindSAT rain rate.
- Computed WindSAT/RapidScat, biases, standard deviations, and correlation coefficients.
- Considered only data within 30 minutes and for the dual-beam part of the RapidScat swath.
Comparison to WindSAT, light rain

RapidScat Speed (m/s)

WindSAT speed (m/s)

No Rain

0 mm/hr < WindSAT Rain Rate <= 1 mm/hr

RapidScat Speed (m/s)

WindSAT speed (m/s)
Comparison to WindSAT, heavy rain

- **5 mm/hr < WindSAT Rain Rate <= 10 mm/hr**
- **10 mm/hr < WindSAT Rain Rate**

Two graphs compare RapidScat speed to WindSAT speed for different rain rates, with lines indicating 'No Corr', 'Old Corr', and 'New Corr'.
QuikSCAT Hurricane Winds

Hurricane Ivan 23:37 UTC 11 Sept. 2004

- Improved QuikSCAT tropical cyclone (TC) wind speed fields
 - 11,435 storm scenes over 10 years
 - Validated vs. hurricane analysis fields and aircraft overflight measurements.

- Problem: Scatterometer winds are corrupted by rain and use empirical retrievals not optimized for high winds.

- Solution: Neural network retrieval method trained specifically for TC winds.

- Developing similar datasets for OceanSAT-2 (ISRO) and ASCAT (ESA) scatterometers.

See http://tropicalcyclone.jpl.nasa.gov