Simulation and Feasibility Study of Spaceborne Doppler Scatterometer for Ocean Surface Currents and Winds

Xiaolong DONG, Qingliu BAO*, Di ZHU

CAS Key Laboratory of Microwave Remote Sensing
National Space Science Center
Chinese Academy of Sciences
(MiRS, NSSC, CAS)
Outlines

- Requirements and Objectives
- Measurement Principle
- System Concept and Parameters
- Accuracy Models and Simulations
- Summary
Requirement and Objectives

Ocean surface current is a very important parameter of ocean dynamic environment. It has been connected to global climate change, marine environment forecasting, marine navigation, engineering security and so on.

- quick global coverage
 - real aperture
 - wide swath
- speed vector measurement
 - multiple azimuth observations

Objective

Pre-study for CFOSAT follow-on

Inherit from wind scatterometer
Measurement principle
-Pulse Doppler Measurement

Interferometric phase:
Radial velocity of target:
\[V_r = \frac{r}{2k} \]

Speed vector:
\[\vec{V} = \vec{V}_{r1} + \vec{V}_{r2} \]

Azimuth angle:
\[\theta_1 = \theta_2 \]
\[V_R = \bar{V}_{\text{sat}} \cdot \hat{n}_{\text{incident}} + \bar{V}_{\text{current}} \cdot (-\hat{n}_{\text{incident}}) \]

\[= V_{\text{sat}} \sin \theta \cos \varphi - V_x \sin \theta \cos \varphi - V_y \sin \theta \sin \varphi \]

\[= \sin \theta \left[(V_{\text{sat}} - V_x) \cos \varphi - V_y \sin \varphi \right] \]

\[f_d = \frac{2V_R}{2} = \frac{2 \sin \left[\left(\frac{V_{\text{sat}}}{V_x} \right) \cos \varphi - V_y \sin \varphi \right]}{\left| \bar{R}_{\text{incident}} \right|} \]

\[\bar{R}_{\text{incident}} = \bar{SP} = (H \tan \theta \cos \varphi, H \tan \theta \sin \varphi, -H) \]

\[\hat{n}_{\text{incident}} = \bar{R}_{\text{incident}} / \left| \bar{R}_{\text{incident}} \right| = (\sin \theta \cos \varphi, \sin \theta \sin \varphi, -\cos \theta) \]
Phase difference of pulse pair:

\[f = 2 \int f_d = \frac{4}{\sin} \left(\begin{array}{c} V_{sat} \ V_x \\ \end{array} \right) \cos \begin{array}{c} V_y \sin \end{array} \right] \]

\[V_x = V_{sat} \left(\frac{4}{\sin} \sin(\begin{array}{c} 1 \\ 2 \end{array}) \left(\begin{array}{cc} 2 \sin & 1 \\ 1 \sin & 2 \end{array} \right) \right) \]

\[V_y = \left(\frac{4}{\sin} \sin(\begin{array}{c} 1 \\ 2 \end{array}) \left(\begin{array}{cc} 2 \cos & 1 \\ 1 \cos & 2 \end{array} \right) \right) \]

\[V_x = V_{sat} + \left(\frac{8}{\sin} \cos(\begin{array}{c} 2 \\ 1 \end{array}) \right) \]

\[V_y = \left(\frac{8}{\sin} \sin(\begin{array}{c} 2 \\ 1 \end{array}) \right) \]
System Concepts and Parameters

- **System concepts**
 - Scanning radar for wide swath
 - Pencil beam antenna for SNR and Doppler precision

- **Doppler shift Measurement and Estimation**
 - Pulse-train for Doppler estimation
System parameters for simulation

<table>
<thead>
<tr>
<th>Orbit parameters</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Satellite altitude</td>
<td>519 km</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Antenna parameter</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Beam width in azimuth (aperture)</td>
<td>1.0° (1.5m)</td>
</tr>
<tr>
<td>Beam width in range (aperture)</td>
<td>1.0° (1.5m)</td>
</tr>
<tr>
<td>Antenna scanning rate</td>
<td>22.6 rpm</td>
</tr>
<tr>
<td>Incidence angle</td>
<td>42.5°</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Signal parameters</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Polarization</td>
<td>VV</td>
</tr>
<tr>
<td>Frequency</td>
<td>13.256 GHz</td>
</tr>
<tr>
<td>Bandwidth</td>
<td>5 MHz</td>
</tr>
<tr>
<td>Transmit power</td>
<td>200 W</td>
</tr>
<tr>
<td>PRF</td>
<td>11 kHz</td>
</tr>
<tr>
<td>Pulse length</td>
<td>89us</td>
</tr>
</tbody>
</table>

• PRF and Bandwidth are optimized.
Pulse sequences

- The green and the red rectangle represent two different kind of chirp pulse with different carrier frequencies for adjacent pulses to suppress intra-pulse contamination.
- The odd and even echo pairs are used for interferometric phase estimation.
- All the echoes are used for echo energy estimation.
- V and H polarization are transmitted alternatively (burst-to-burst).
The echoes are separated into two channels.
Each one is the same as traditional scatterometer.
The pulse compress are done by the full-deramp.
Pulse compress

- The two channels use different reference signals.
- Each reference signal has the same carrier frequency as the transmitted pulse.
- The echoes’ overlap can be separated by the low pass filter.
Odd pulse compression result
(1,3,5,...)

Even pulse compression result
(2,4,6,...)
Accuracy Models and Simulations

Ocean surface current speed measurement accuracy

Interferometric phase estimate accuracy

Speed retrieval accuracy

Correlation coefficient

Independent samples

Satellite attitude and speed measurement error

Input parameter errors of doppler spectrum model

Coherence Model
Coherence model

Thermal decorrelation

- Due to additive noise in the signal
- Determined by SNR
- In the low wind speed condition, thermal decorrelation will be the dominant decorrelation factor.

Mismatch decorrelation

- Due to different observation regions
- Related to the satellite speed and antenna scan rate
- The mismatch decorrelation has little impact on the coherence.
• Due to different observation geometry
• Positions difference is the product of the satellite speed and the time interval
• It is the dominant decorrelation factor in cross-track direction ($\phi_0 = 90^\circ$).

• Due to the change of the scattering characteristics of the ocean surface during the observation interval
• The temporal decorrelation is ignorable, when the PRF is higher than 1kHz.
Ocean surface current speed accuracy

Correlation coefficient

- Correlation coefficient increases with the wind speed. (SNR improves)
- Correlation coefficient decreases with the cross-track distance.

Current speed STD along radial direction

Unit: m/s Temporal resolution: 2 days
Spatial resolution: 50km x 50km
- Current speed STD increase with the cross-track distance.
Ocean surface current speed accuracy

Wind speed: 4m/s, 7m/s, 11m/s, 20m/s

\(\sigma_{V_x} \): current speed STD in along-track direction

\(\sigma_{V_y} \): current speed STD in cross-track direction

\(\sigma_V \): current speed STD in radial direction

- Current speed STD decrease with wind speed
- Wind speed should be larger than 4m/s
Ocean surface current speed accuracy

The effective swaths with different wind speed and current speed accuracy

<table>
<thead>
<tr>
<th>Current speed STD \ Wind speed</th>
<th>3 m/s</th>
<th>4 m/s</th>
<th>5 m/s</th>
<th>6 m/s</th>
<th>7 m/s</th>
<th>8 m/s</th>
<th>9 m/s</th>
<th>10 m/s</th>
<th>11 m/s</th>
<th>12 m/s</th>
<th>20 m/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1 m/s</td>
<td>0</td>
<td>214</td>
<td>471</td>
<td>570</td>
<td>604</td>
<td>618</td>
<td>622</td>
<td>624</td>
<td>626</td>
<td>627</td>
<td>630</td>
</tr>
<tr>
<td>0.15 m/s</td>
<td>354</td>
<td>633</td>
<td>662</td>
<td>673</td>
<td>679</td>
<td>683</td>
<td>685</td>
<td>687</td>
<td>688</td>
<td>689</td>
<td>690</td>
</tr>
<tr>
<td>0.2 m/s</td>
<td>631</td>
<td>677</td>
<td>701</td>
<td>710</td>
<td>714</td>
<td>717</td>
<td>719</td>
<td>720</td>
<td>721</td>
<td>722</td>
<td>723</td>
</tr>
</tbody>
</table>

Scatterometer swath: 1000 km

Effective swath: the current speed components STD for both along-track and cross-track direction are smaller than 0.1 m/s.
The effect of satellite speed determination error

- The effect of satellite speed error on current speed retrieval accuracy is linear.
- The effect of satellite speed error for that of along-track direction is larger than that of cross-track direction.
- The effect of satellite speed error can be insignificant with high-precision satellite speed measurement.

Unit: cm/s
The effect of attitude determination error

• The effect of yaw measurement error is large in cross-track direction.
• The effect of pitch measurement error is large in all directions.
• The effect of roll measurement error is small.

Unit: cm/s
The effect of attitude measurement error in total

\[\Delta V_{\text{total}} = \sqrt{\Delta V_{\text{yaw}}^2 + \Delta V_{\text{pitch}}^2 + \Delta V_{\text{roll}}^2 + \Delta V_{\text{sat}}^2} \]

- Current speed error is largest along the cross-track direction.
- Current speed error is smaller than 18 cm/s when the attitude determination error is smaller than 0.001°.

Unit: cm/s
Sensitivity of parameters of Doppler spectrum model

Ocean wave spectrum used as known for retrieval;
Directional distribution function, wind speed, wind direction.

Comparison of different ocean wave spectrum

Comparison of different directional distribution function

Blue lines: Gaussian function
Black stars: Cosine function
The effect of ocean wave spectrum model

- Doppler frequency shift is sensitive to ocean wave spectrum models.
- High wind condition is more serious than that of low wind condition.
- VV polarization is better than that of HH polarization.
The effect of directional distribution function

HH polarization

- Doppler frequency shift is sensitive to the directional distribution function in upwind and downwind directions.

VV polarization

- VV polarization is better than that of HH polarization.
The effect of wind speed determination error

- Current speed retrieval error is sensitive to the wind speed determination error.
- VV polarization is better than that of HH polarization.
The effect of wind direction determination error

• Current speed retrieval error is sensitive to the wind direction determination error in upwind and downwind directions.
• VV polarization is better than that of HH polarization.
Effective swath width for current speed retrieval error smaller than the specified threshold value
(unit: km)

<table>
<thead>
<tr>
<th>流速精度(m/s)</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.10</td>
<td>0</td>
<td>0</td>
<td>214</td>
<td>471</td>
<td>570</td>
<td>604</td>
<td>618</td>
<td>622</td>
<td>624</td>
<td>626</td>
<td>627</td>
<td>630</td>
</tr>
<tr>
<td>0.15</td>
<td>0</td>
<td>354</td>
<td>633</td>
<td>662</td>
<td>673</td>
<td>679</td>
<td>683</td>
<td>685</td>
<td>687</td>
<td>688</td>
<td>689</td>
<td>690</td>
</tr>
<tr>
<td>0.20</td>
<td>0</td>
<td>631</td>
<td>677</td>
<td>701</td>
<td>710</td>
<td>714</td>
<td>717</td>
<td>719</td>
<td>720</td>
<td>721</td>
<td>722</td>
<td>723</td>
</tr>
<tr>
<td>0.25</td>
<td>388</td>
<td>668</td>
<td>707</td>
<td>723</td>
<td>732</td>
<td>738</td>
<td>741</td>
<td>744</td>
<td>745</td>
<td>746</td>
<td>747</td>
<td>749</td>
</tr>
<tr>
<td>0.30</td>
<td>595</td>
<td>693</td>
<td>724</td>
<td>744</td>
<td>755</td>
<td>761</td>
<td>763</td>
<td>765</td>
<td>766</td>
<td>767</td>
<td>768</td>
<td>770</td>
</tr>
<tr>
<td>0.35</td>
<td>639</td>
<td>711</td>
<td>742</td>
<td>762</td>
<td>769</td>
<td>773</td>
<td>775</td>
<td>778</td>
<td>779</td>
<td>780</td>
<td>781</td>
<td>783</td>
</tr>
<tr>
<td>0.40</td>
<td>662</td>
<td>725</td>
<td>759</td>
<td>773</td>
<td>780</td>
<td>785</td>
<td>788</td>
<td>790</td>
<td>792</td>
<td>793</td>
<td>794</td>
<td>797</td>
</tr>
<tr>
<td>0.45</td>
<td>676</td>
<td>738</td>
<td>768</td>
<td>783</td>
<td>791</td>
<td>796</td>
<td>800</td>
<td>803</td>
<td>805</td>
<td>806</td>
<td>808</td>
<td>810</td>
</tr>
<tr>
<td>0.50</td>
<td>691</td>
<td>752</td>
<td>777</td>
<td>793</td>
<td>803</td>
<td>808</td>
<td>812</td>
<td>815</td>
<td>818</td>
<td>819</td>
<td>821</td>
<td>824</td>
</tr>
</tbody>
</table>
• Communication error \(K_{pc} \) is smaller than that of HY-2 scatterometer, when the wind speed is larger than 3m/s (orbit, power, antenna).

• The wind vector accuracy of doppler scatterometer can be improved significantly in high wind condition compared to traditional scatterometer.
Summary

- The effective swath with 0.1m/s speed accuracy for ocean surface current speed retrieval is about 60% of scatterometer’s swath, when the wind speed is 7m/s.

- Current speed retrieval error is sensitivity to the Doppler spectrum model used for retrieval.

- VV polarization is better than that of HH polarization.

- The current speed retrieval error can be further reduced by long-time average.

- Communication error (Kpc) is smaller than of HY-2 scatterometer, when the wind speed is larger than 3m/s, and better wind performance can be expected.

- Further study for Ku/Ka dual-frequency system with higher resolution and SNR is undergoing.
Thanks!

Questions and Comments?