Bringing Winds Closer to the Coast with QuikSCAT and RapidScat

Alexander Fore, Bryan Stiles, Ted Strub and Ernesto Rodriguez

© 2015 California Institute of Technology, Government Sponsorship acknowledged

Coastal Processing Methods

- Land Contamination Ratio (LCR):
 - Owen and Long TGARS 2009
 - Compute X-factor weighted portion of slice over land, call this the land contamination ratio.
- In processing apply a threshold on this value for inclusion in wind retrieval
 - We have implemented this for QuikSCAT and RapidScat.
 - The LCR method is a stepping stone on the way to the next method...

Land Contamination Ratio Expected Sigma0 (LCRES)

- LCRES = LCR * ES (Expected Sigma0)
- Two step process:
 - 1: Preprocessing: Pre Compute Maps of Expected Sigma0 (ES = ES(Ion, lat, cell azi))
 - Seasonal time scale averaging.
 - Expected Sigma0: For all slices in that intersect a given map pixel:
 - Compute portion of slice X factor that lies within pixel
 - Accumulate sums of X factors in map pixel and portion of signal energy in pixel
 - 2: During wind processing
 - Compute LCR value for every slice
 - LCRES = LCR * ES
- Conservative method: threshold on LCRES value for inclusion in wind retrieval
- Aggressive method: Subtract LCRES from observed sigma0 and rescale by 1 – LCR:
 - Sigma0_corrected = (sigma0_obs LCR * ES) / (1-LCR)
- We have computed the expected sigma0 for QuikSCAT

LCR Results: Speed Bias vs ECMWF

LCR Results: Speed STD vs ECMWF

LCR Results: Direction STD vs ECMWF

Number of Retrieved Wind Cells

QuikSCAT Rev: 44521; ECMWF

QuikSCAT Rev: 44521; LCR: -30 dB

QuikSCAT Rev: 44521; LCR: -20 dB

QuikSCAT Rev: 44521; Nominal

QuikSCAT Rev: 44585; ECMWF

QuikSCAT Rev: 44585; LCR: -30 dB

26.5 800 14 26 12 25.5 10 25 18 \mathcal{O} 24.5 6 24 4 23.5 --83 -82.5 -82 -81.5 -81 -80.5 -80

QuikSCAT Rev: 44585; LCR: -20 dB

QuikSCAT Rev: 44585; Nominal

QuikSCAT Rev: 44963; ECMWF

QuikSCAT Rev: 44963; LCR: -30 dB

26.5 Sol 11 10 26 9 25.5 8 25 6 \mathcal{S} 5 24.5 4 24 3 2 23.5 <mark>×</mark> -83 -82.5 -82 -81.5 -81 -80.5 -80

QuikSCAT Rev: 44963; LCR: -20 dB

QuikSCAT Rev: 44963; Nominal

Coastal Study Conclusions

- LCR method works well for QuikSCAT indicating conservative LCRES methods will work better.
 - Obtains wind retrievals significantly closer to the coast
 - Minimal increase in errors w.r.t ECMWF in near coast data as compared to open ocean.
- RapidScat coastal processing is still needs work
 - Refine slice spatial response estimation
 - Improve antenna pattern translation and scaling
 - Examine geolocation and echo-tracking algorithms for potential errors.

QuikSCAT Rev: 44471; LCR: -30 dB

QuikSCAT Rev: 44471; LCR: -20 dB

QuikSCAT Rev: 44521; LCR: -20 dB

QuikSCAT Rev: 44585; LCR: -30 dB

QuikSCAT Rev: 44585; LCR: -20 dB

QuikSCAT Rev: 44585; Nominal

QuikSCAT Rev: 44742; ECMWF

QuikSCAT Rev: 44742; LCR: -30 dB

QuikSCAT Rev: 44742; LCR: -20 dB

QuikSCAT Rev: 44742; Nominal

QuikSCAT Rev: 44785; ECMWF

QuikSCAT Rev: 44785; LCR: -30 dB

QuikSCAT Rev: 44785; LCR: -20 dB

QuikSCAT Rev: 44785; Nominal

QuikSCAT Rev: 44963; ECMWF

QuikSCAT Rev: 44963; LCR: -30 dB

QuikSCAT Rev: 44963; LCR: -20 dB

QuikSCAT Rev: 44963; Nominal