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JIntroduction : Upwelling systems | Atmosphere-driven
cooling processes
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The trade winds variability is controlled by two Mechanism: Vertical mixing

atmospheric high-pressure systems and drives i

upwelling seasonality in both Atlantic systems. —
higgher
Mechanism: Offshore Ekman Transport moment)
Seaward advection in the upper ocean over
welocity
marmentum)

==> Compensating upward movement
at the coast.



pIntroduction : Upwelling systems| when the ocean feeds back
on the atmospheric flow

e . |The stability of the Marine Atmospheric Boundary Layer (MABL)
IRl #_ |is modulated by the SST.
Deceleration (acceleration) of the wind over cold (warm) waters.
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Approximate linear relationships Wind stress curl (colors) and crosswind SST

gradient (contours, CI=0.3° per 100 km)




\ )Introduction : Upwelling systems | Orographic effect in
the coastal band —

The wind is constrained by the coast, [Capet et al., 2004]
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especially with a rugged coastline or A
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Figure 1. COAMPS alongshore wind stress vs. distance to
the coast at 3 different resolutions. The wind is averaged
over a 30 km alongshore interval south of Pt. Sur during
August 2003.

See also Renault et a/. [2015]

The whole upwelling dynamics may be
affected by the competition between
reduced Ekman transport divergence and
increased upwelling-favorable wind curl.

Meridional component of the wind on 3 January
2011 at 06:00:00 UTC from the IFS operational
ECMWF spectral model. Contour interval : 0.5 m/s
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J Introduction : Motives and purpose
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Global Context:

Climate models often
show substantial SST

warm biases in
Eastern Boundary

Upwelling Systems

(EBUS)

[Small et al., JC submitted]

Regional Context :

Cold biases in modeled SST can be
ascribed to poorly resolved wind
variability (e.g., Burls and Reason
[2008]).

Higher-resolution products must
sample mesoscale variability of the
wind stress near the coast.

What are the wind scales at play in upwelling
dynamics and for which processes ?

Twofold purpose:

1. Better document and quantify enhancements to wind stress structures in Southern
Benguela dynamics

2. Highlight the short-term upwelling responses to the unique change of momentum
fluxes in an hydrodynamic model.



\\Y) Outline

Recent improvements in the Ifremer/LOS retrieval wind algorithm :
Daily L3 products from QuikSCAT observation: QS50 (50km) and QS25 (25km)

1. Actual spatial resolution

Cross-correlation calculation to assess the actual spatial resolution:
Local and horizontal coherence of the wind  q¢c50 s Q525

2. Origin of the differences

Fine scale curl patterns in the QuikSCAT product at 0.25° (QS25)
QS50 vs. QS25

New results

3. Numerical sensitive studies

Upwelling response to fine scales in the wind surface stress:
Focus on SST, dynamical aspects (coastal jet, cross-shore exchange, undercurrent)
and vertical velocities.




;A*\Wv 1. Actual spatial resolution

Intrinsic (given grid) vs. actual spatial resolution : Local and horizontal coherence
of the wind a) QS25

Southern
Africa
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Distance dvaries according to zones and products:
Large decorrelation distance (>300km) — coherent winds, large-scale patterns.
Finer scales found in QS25 satellite product.
Coastal band characterized by a strong spatial inhomogeneity

- Area with strong air-sea-continent interactions.



) 2. Origin of the differences

Hypothesis : Linear relationship between the wind
stress curl and the crosswind SST gradient [Chelton et

al., Science 2004] from weekly to seasonal time scales.
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Statistical response studied by bin-averaging
weekly averages of QS25 wind stress curl as a
function of weekly-averaged crosswind SST
gradients over 261 weeks.

Evidence for SST feedback
in the QS25 wind product.
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,},*\W? 2. Origin of the differences Evidence for SST feedback
—— in the QS25 wind product.
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| ;t\W't 2. Origin of the differences Q550 vs. Q525
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An active thermal
coupling contributes to
wind stress reduction
over pronounced SST
fronts.
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Mean of the wind stress
gradient (colors) and SST a0
gradient (contours) over the
upwelling season
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QS25 gradients and SST gradients are
coupled. Coupling coefficient and

. 2 . .
QS50 winds are less statistically related to corresponding R coefficient

the SST field than QS25 winds. O R
==> QS25 data include spatial scales that are | 9>2° 0.013 0.89
coherent with the scales of coupled
thermodynamical processes.

Desbiolles et al. [JGR, 2014b]



) 3. Numerical sensitivity studies

A
Set of experiments :

Regional Ocean Modeling System (ROMYS) QS25
Horizontal resolution 1/12°

32 vertical levels Same initial QS50

. . condition
Atmospheric forcing: Blended QS25-
Wind stress : QS50 / QS25 / Blended QS25-ECMWF ECMWE

QS25 January-February 2005

Wind stress mean conditions EKmMan Transport distribution Wind stress curl distribution
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1. QS50 vs. QS25
2. Wind profile : QS25 vs. Blended QS25-ECMWF
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) 3. Numerical sensitivity studies | @550vs. Q525
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) 3. Numerical sensitivity studies QS50 vs. @S25

Fate of costal particles in the Southern Benguela upwelling:

Calculation with the offline Langrangian tool ARIANE [Blanke and Raynaud, 1997]
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Alongshore component of the QS50 wind
stress is more important than QS25.
Consequences :

- Larger cross—shore export by
Ekman transport

- More intense oceanic coastal jet
(geostrophic balance of the SST front)

QS25 wind stress curl more important
over the whole coastal band.
Consequence:

Intensification of the poleward
undercurrent at basin-scale through
Sverdrup balance



Coastal wind drop-off

) 3. Numerical sensitivity studies
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The wind profile in the satellite blind RN\ 2 T
zone (about 30km) remains unknown : WL =N

T
i

Blended QS25-ECMWF

Sensitivity tests o

The whole upwelling dynamics
and especially the vertical
velocity field may be affected

Competition between reduction

of coastal upwelling (Ekman Meridional component of the wind on 3 January 2011 at
06:00:00 UTC from the IFS operational ECMWF spectral model

transport) and
at 2 horizontal resolutions. Contour interval : 0.5 m/s

Increase of Ekman pumping.

Characteristic length scales :
- Coastal upwelling [, - #R,

- Wind drop-off LDmp —» Here, the drop-off length scale is imposed by the
width of the satellite blind zone (15-30km

according to latitude)



Coastal wind drop-off
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Coastal SST is warmer
(colder) with the introduction
of a wind deceleration
(acceleration)

Overall, there is imbalance between
Ekman transport and Ekman
pumping : The wind drop-off,
partially induced by orography,
tends to reduce coastal SST
cooling.

BUT, the oceanic response is not
linearly dependent on the wind
reduction applied at the coast.



\\-\W) 3. Numerical sensitivity studies
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f “ 3. Conclusions

- The QS25 product is a relevant dataset to capture wind variability in the

nearshore region : Good representation of SST/wind interactions in the upwelling
extension zone

SST-driven curl can be locally (upwelling extension zone) the main contributor
(70%) of the WSC variability and magnitude. (Desbiolles et al. [JGR, 2014b])

Still impotant issues : sign of the ocean feedback during an upwelling event?

— Numerical studies show that upwelling dynamics are sensitive to both mesoscale

(thermal coupling, 0(100km)) AND submesoscale (wind drop-off, 0(10km)) wind
variability.
Higher-resolution products need for realistic upwelling responses !!

Thanks for your attention
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