

THE CYGNSS MISSION LEVEL 2 WIND SPEED RETRIEVAL ALGORITHM

Maria Paola Clarizia^{1,4*}, Christopher Ruf¹, Andrew O'Brien² and Scott Gleason³

¹ University of Michigan, Ann Arbor, USA ² Ohio State University, Columbus USA ³Southwest Research Institute, Boulder USA ⁴ National Oceanography Centre, Southampton, U.K

* email: clarizia@umich.edu

INTRODUCTION

1. GNSS-R: Concept & Principles

◆GNSS-R exploits signal of opportunity from navigation constellations (GPS, GLONASS, Galileo) scattered from the sea surface to derive ocean roughness, related to wind speed and waves (figure 1).

GNSS-R has dense space-time sampling capabilities, uses L-Band signals that penetrate well through the rain, and only calls for simple low-cost/low-power GNSS-R receivers.

3. Overview of CYGNSS

CYGNSS will measure ocean surface wind speed in all precipitating conditions, including those experienced in the TC eyewall, with sufficient frequency to resolve genesis and rapid intensification (Fig. 4a);

*The bistatic scattered power comes mainly from a Specular Point (SP) and an area around it called **Glistening Zone (GZ, figure 2)**

GNSS-R Data are represented in the form of 2D Delay-Doppler Maps (DDM) of scattered power as a function of delay and Doppler frequency (see Figure 3).

Science Objective

Measure ocean surface

Measure ocean surface

/inds in TC inner core with

h temporal frequency

Table 1

winds under TC conditions

Observabl

Windspeed uncertainty

Windspeed dynamic rai

Spatial resolution

Mean revisit tim

Earth coverage

Precip

♦ GNSS-R uses forward scattering, hence when the wind increases:

- a) the scattered power at the specular point (DDM peak) decreases;
- b) The scattered power from the glistening zone (DDM horseshoe branches) increases;

CYGNSS uses 8 satellites in LEO at 35° inclination (Fig. 4b), each carrying a GPS-R receiver able to track up to 4 simultaneous reflections per second (Fig. 4c);

4. CYGNSS Specifications

Table 1 shows the mission objectives and expected performances;

Figure 5 illustrates some specifications for each CYGNSS observatory;

Figure 3. Example of DDMs simulated using the CYGNSS E2ES

nated Performance

Physical Parameter

Variable 5-50 km (ground

< 100 mm/hr (25 km

footprint

windspeed

processing)

4 hr

< 70 m/s (Cat 5)

> 70% coverage of all

historical TC storm track

LEVEL 2 WIND RETRIEVAL ALGORITHM

5. DDM Observables

DDMA (Delay-Doppler Map Average)

The DDMA is the average value over a given delay-Doppler window around the specular point;

LES (Leading Edge Slope)

The LES is the slope of the leading edge of the Integrated Delay Waveform (IDW), obtained by integrating (incoherently) the DDM along the Doppler dimension

Delay-Doppler Window for DDMA and LES Chosen as a trade-off to:

- ✓ Comply with spatial resolution (25 km x 25 km);
- \checkmark Maximise the received signal;

6. Wind Retrieval Algorithm

6.1 L2a Correction

The L2a correction suppresses the dependence of th observables on incidence angle (see figure 6).

6.2 Time averaging of observables

If a single sample has a scattering area lower than 25 km x 25 km, observables can be averaged in time to produce an Equivalent Field Of View (EFOV) with the desired resolution (figure 7). Some geometries (Incidence angle greater than 54.5° do not meet the resolution requirements.

Minimise inclusion of noise-only delay-Doppler pixels;

Delay/Doppler range of [-0.25 0.25] chips and [-1000 1000] Hz is selected

7. Results

Figure 10 (black box) shows the characteristics of the 13 Day Tropical Cyclone simulated with the Nature Run model, and used to train and test the algorithm; Figure 11 (red box) shows the resulting performances of the algorithm;
Table 2 highlights that the algorithm meets the
 baseline requirements on the average RMS

Figure 7 (left): plot of the sqrt of scattering area as a function of incidence angle, for the delay-Doppler window selected. The 25 km CYGNSS baseline requirement is also shown. (right): Graphical illustration of how time averaging works.

6.3 Training Data, Geophysical Model Function and Minimum Variance Estimator

- The DDMA and LES are computed from DDMs generated using the CYGNSS E2ES and a Nature **Run wind field [1]** that simulates 13 days of a full life-cycle of a Tropical Cyclone; The whole dataset of observables is split into **training and test dataset**;
- An empirical Geophysical Model Function or GMF (Look-Up Table) is derived from the training dataset of each observable with high enough **Range-Corrected Gain, or RCG**;

Figure 8 training DDMA (left) and LES (right) data with RCG> 10(blue stars) shown together with their empirical GMF (red stars) derived in the form of a Look-Up table

Figure 12 (green box) shows two examples of 1-minute CYGNSS transects near and over the storm center, acquired with high enough RCG (left); The corresponding true and retrieved winds versus time (right) show a good match.

CONCLUSIONS & FUTURE WORK

- \diamond A wind retrieval algorithm has been illustrated, which uses two different observables: DDMA and LES;
- ♦ The approach is based on the use of an empirical Geophysical model function (GMF) derived from a set of training data from each observable; the winds retrieved from DDMA and LES are combined into a Minimum Variance (MV) estimator to obtain the best possible performances;
- The algorithm has been tested using a dataset independent from the training one. Both training and test datasets have been obtained from the CYGNSS E2ES and a \diamond Nature Run wind field simulating a life cycle of a TC. The final average wind speed RMS error meets the CYGNSS baseline requirements **ONGOING & FUTURE WORK:**
- ♦ Application of this algorithm to DDMs generated using the Hurricane Weather Research and Forecasting (HWRF) model [3] and detailed cal/val analysis;
- ♦ Investigations on ways to improve the present algorithm (i.e. inclusion of more observables, robust GMF derivation), testing of new retrieval algorithms (DDM fitting);

REFERENCES [1] Nolan, D. S., R. Atlas, K. T. Bhatia, and L. R. Bucci (2013), "Development and validation of a hurricane nature run using the joint OSSE nature run and the WRF model", J Adv. Model. Earth Syst., 5, doi:10.1002/jame.20031.

[2] Clarizia, M. P., Ruf, C.; Jales, P. and Gommenginger, C., "Spaceborne GNSS-R Minimum Variance Wind Speed Estimator," IEEE Trans Geosci. Remote Sens., 52(n), pppppp, doi: 10.1109/TGRS.2014.2303831, 2014.

```
[3] S. Gopalakrishnan, Q. Liu, T. Marchok, D. Sheinin, N.
Surgi, R. Tuleya, R. Yablonsky and X. Zhang, "Hurricane
Weather Research and Forecasting (HWRF) Model
Scientific Documentation", available at http://
www.dtcenter.org/HurrWRF/users/docs/
scientific documents/HWRF final 2-2 cm.pdf
```