Uncertainty in Ocean Surface Winds over the Nordic Seas

Surface Winds

National Center for Environmental Prediction Reanalysis II (NCEPR) [Kanamitsu et al., 2002]	NCEP Climate Forecast System Reanalysis (CFSR) [Saha et al., 2010]	Arctic System Reanalysis, interim version (ASR) [Bromwich et al., 2010]	Cross-Calibrated Multi- Platform Ocean Surface Wind Components (CCMP) [Atlas et al., 2011]
 Period covered: 1979 2013; Assimilated observations: surface pressure, SST and sea ice distribution, scatterometer winds (since 2002) Products include 3- and 6-hourly data on ~1.9 x 1.9° global grid 	 Period covered: 1979 2013; ~38 km resolution, 1hr fields Assimilation: all available conventional and satellite observations Updated assimilation and forecast system Covers atmosphere, ocean, sea ice, and land 	 Period covered: 2000-2012; Blend of modeling and observations; Produced using Polar WRF and the WRF- VAR assimilation system; 3hr data, 30 km 	 Period covered: July 1, 1987 – 2011; 0.25° resolution, 6hr fields The data set includes cross- calibrated satellite winds derived from SSM/I, SSMIS, AMSR-E, TRMM TMI, QuikSCAT, SeaWinds, WindSat and buoy observations. Satellite data are assimilated into the ECMWF Operational Analysis fields.

Wind climatology is compared to the climatology derived from the QuikScat Winds (RSS gridded product)

January Winds, 2004-2008

Mean Directional Offset relative to the QuikSCAT

Spatial Eigenvectors of the 1st EOF and Principal Components of the Area-Mean Vorticity

• Circulation around a closed cell:

$$C = \oint \boldsymbol{v} \cdot d\boldsymbol{l}$$

• Area-mean vorticity:

(Bourassa and Ford, JAOT, 2010)

 Diameter of the closed cells is 200 km

Jul 2007

Ekman Pumping (*m/day*) Esimated from the Wind Data January, 2004-2008

Model Experiments with Different Winds

0.08° HYCOM/CICE Modeling System of the Arctic Ocean

- ARCc0.08: Coupled HYbrid Coordinate Ocean Model and Los Alamos Sea Ice Model (CICE 4.0)
- 32 vertical ocean levels
- Atlantic and Pacific Boundaries at ~39°N
 - Closed (no-ice) in CICE
 - Nested into 1/12° Global HYCOM
- Run from Oct. 2005 April 2006 with
 - CFSR winds
 - NCEPR winds
 - CCMP + CFSR (north of 78.4N) winds
 - ASR + CFSR (south of ~42N) winds

Model Domain and Grid Resolution (km)

Ekman Pumping in the Simulation

January T°C and σ_0 (kg/m³) Contours from HYCOM – CICE Forced with the CCMP Winds

0 ¬										T°C
-500 -	Greer	nland		28		~28		27.5 Bi	arents	7
-1000 -									Sea	6 5
-1500 -				Lif th	ted iso e cyclo	pycnals nic Gree	due to enland			4
-2000 -				Gy wi	re driv nds <mark>du</mark>	en by c ring w <mark>i</mark> l	yclonic nter			3
-2500 -										1
-3000 -			and the second s							-1
-3500 -		Handweiter (1997) Handweiter (1997)	The second se							-2
L	-20	-15	-10	-5	0	5	10	15	20	

East Greenland Transport and Wind Curl

East Greenland Current's structure:

- Thermohaline driven throughflow (a small seasonal cycle) (~ 8Sv at 75N, *Woodgate et al., 1999*)
- A western-intensified southward flow of a wind-driven gyre (a large seasonal cycle) (~ 19Sv at 75N, *Woodgate et al.*, 1999)

[Aagaard, 1970; Stevens, 1991; Woodgate et al., JGR, 1999]

• A western-intensified southward flow is a western-boundary current that balances the northward Sverdrup flow driven by the curl of the wind stress:

$$V = \frac{1}{\rho_0 \beta_0} \hat{k} \cdot \nabla \times \tau$$

Low-Pass Filtered Transport from the Model Experiments

10-

Monthly mean wind-driven flat-bottom northward Sverdrup transport (Sv) at 75°N from the wind products

- Maxima/minima in the winddriven Sverdrup transport correspond to the maxima/minima in the southward volume flux of the EGC with ~1 month delay.
- From the time-scale analysis

 [Anderson and Killworth, 1979; Anderson et al., 1979; Jonsson, 1991], wind-induced changes on seasonal timescales must be propagated by barotropic Rossby waves in the Nordic Seas.
- Linear barotropic Rosby wave speeds suggest a timescale of O(1 mo) for a Sverdrup balance to set up after a wind is applied to the Greenland Sea basin [Jonsson, 1991].

Oct 2005

the East Greenland Current at 75°N from the iments with different wind forcing

Summary

- Climatology of ocean surface winds over the Nordic Seas from the NCEPR-II, CFSR, CCMP and ASR is validated by comparing against QuikScat RSS:
 - Monthly mean winds
 - 25th and 75th percentile winds
 - Cross-correlation of the wind speed anomalies
 - Directional offset
 - Area-mean wind vorticity
- Qualitatively, there is a good agreement in climatology across the wind data. NCEPR winds have noticeable biases compared to the other wind products.
- Sensitivity of the large-scale ocean response to discrepancies in the wind fields is assessed using Arctic Ocean HYCOM-CICE forced with different wind data:
 - Upwelling ("doming") of the isopycnals in the Greenland Gyre in winter
 - Wind-driven transport of the ocean currents (EGC, volume fluxes in the Fram and Denmark Straits)
- Disagreement in the ocean processes among the model experiments stems from differences in the wind stress curl derived from the wind data

Synopsis from the IOVWST 2013:

Cyclones in the Nordic Seas

- Large-scale low-pressure systems: Spatial scale: O(10³) km Time scale: days-week
- Meso- scale low pressure systems (e.g., Polar Lows):
 Spatial scale: O(100) km Time scale: hours – day

Representation of a large–scale cyclone in the wind products 20 December, 2004

Spatial Wind Spectra

July Winds, 2004-2008

Circular-Circular Correlation with QuikSCAT

$$\rho_{c}(\Phi,\Theta) = \frac{E[\sin(\Phi - \overline{\Phi})\sin(\Theta - \overline{\Theta})]}{\sqrt{\operatorname{Var}[\sin(\Phi - \overline{\Phi})]\operatorname{Var}[\sin(\Theta - \overline{\Theta})]}}$$

• $\rho = \pm 1$ iff $\Phi = \pm \Theta + \theta_0$

• $\rho=0$ if Φ and Θ are independent (the converse may not be true) [*Jammalamadaka & Sarma*, 1988] All winds show a strong relation with QuikSCAT: $\Phi \approx \pm \Theta + \theta_0$

January 75th Percentile Winds, 2004-2008

