

Hauser D.⁽¹⁾, Liu Jianqiang ⁽²⁾, Dong Xiaolong ⁽³⁾, Zhu Di ⁽³⁾, Tison C.⁽⁴⁾, Lambin J. ⁽⁴⁾, Amiot T.⁽⁴⁾, Castillan P. ⁽⁴⁾, Mouche A.⁽⁵⁾, Chapron B. ⁽⁵⁾, Ardhuin F. ⁽⁵⁾, Lefèvre JM. ⁽⁶⁾, Aouf L. ⁽⁶⁾, Mahfouf JF⁽⁶⁾

(1) LATMOS- CNRS –UVSQ-UPMC, France
 (2) NSOAS, Beijing, China,
 (3) MiRS-NSSC-CAS, Beijing China
 (4) CNES, Toulouse, France
 (5) IFREMER; Brest, France
 (6) Météo-France, Toulouse, France

Overview

► The CFOSAT mission

- Scientific objectives
- Mission overview
- Observation requirements
- Key dates and organization
- ► The SWIM instrument
- SWIM data products
- Preparation of data analysis and geophysical validation
- ► Synergy of multi-incidence observations

Scientific objectives

Main objective: to provide ocean surface wind and wave observations at the global scale

- •To improve wind and wave forecast and sea-state monitoring
- •To improve the knowledge and the modeling of surface waves
- •To get simultaneous wind and wave measurements for characterization and modeling of air/sea coupled effects
- To improve description of surface conditions for atmospheric models (assimilation, see e.g. presentation by Payan yesterday) and oceanic models (forcing conditions)

Secondary objectives

Land surface monitoring (soil moisture and soil roughness) Polar ice sheet and sea ice characteristics

Mission overview

Two Instruments

- SWIM: Surface Waves Investigation and Monitoring (France) Ku-Band rotating scatterometer at small incidence (0-10°)

=> Directional wave spectra (+ Hs and wind speed)

- SCAT (China)

Ku-Band rotating fan-beam scatterometer (RFSCAT) at medium incidences (20-46°) – concept Lin et al, TGRS 2000

=> wind vector (± 500 km across-track swath)

Near-Polar Orbit, 520 km, 13 day repeat cycle

Minimum duration: 3 years

Near Real time processing + advanced differed-time products

Mission overview

SWIM
 Wave
 scatterometer
 Ku-band

CFØSAT

► Orbit

Sun synchronous Local time at descending node AM 7:00 Altitude at the equator 519 km Cycle duration 13 days

> Mass and dimensions
> Mass ~600 kg
> Primary structure
> ~1.4mx1.4mx1.2m

SCAT
 Wind
 scatterometer
 Ku-band

Observation requirements

SWIM measurements and requirements

Directional wave spectra at a scale of 70 x 90 km

Wavelength range 70m-500m

10% accuracy on wavelength, 15° accuracy on direction

Significant wave height and wind speed alongtrack

10% on SWH (or 50 cm whichever is better) rms <2 m/s on wind speed

Normalized radar cross-section from 0° to 10° Absolute accuracy of ±1 dB Relative accuracy between incidences ± 0.1 dB

SCAT measurements and requirements

Wind vector over swath of $\pm ~600$ km across-track 50 km resolution cell (25 km experimental) accuracy: 2m/s rms @5~24m/s, 20° wind direction Backscattering coefficient : $\pm 0,5$ to 1 dB

ъ

Key dates

2006

Signature of the Memorandum Of Understanding (China-France) on CFOSAT 2007-2008

▶ Phase A CFOSAT

Feasibility demonstration

2009-2010

Phase B CFOSAT

Preliminary design

2011-2016 (2017)

Phases C/D CFOSAT

Detailed design

Manufacturing of qualification models and flight model

2018

Operational system in orbit

Organization (1/2)

CFOSAT system – science & data

Overview

► The CFOSAT mission

- Scientific objectives
- Mission overview
- Observation requirements
- Key dates and organization

► The SWIM instrument

- SWIM data products
- Preparation of data analysis and geophysical validation
- Synergy of multi-incidence observations

SWIM instrument

- ► Real aperture radar
 - •Ku-band (320 MHz bandwidth)
 - •On-board digital processing
 - •6 distinct beams between nadir and 10° incidence
 - •Rotating antenna at 5.6 complete rotations/min

Ground track

► The CFOSAT mission

- Scientific objectives
- Mission overview
- Observation requirements
- Key dates and organization
- ► The SWIM instrument
- SWIM data products
- Preparation of data analysis and geophysical validation
- Synergy of multi-incidence observations

Overview of SWIM products

σ^0 products

Wave products (2/2)

► The CFOSAT mission

- Scientific objectives
- Mission overview
- Observation requirements
- Key dates and organization
- ► The SWIM instrument
- SWIM data products
- Preparation of data analysis and geophysical validation

Synergy of multi-incidence observations

Preparation for data analysis and geophysical CAL/VAL (1/2)

► SWIM

End to End simulator: surface 2D topography (from wave spectra) + wind , platform/orbit conditions => radar signal => inversion

work still going on : speckle corrections, Modulation transfer function, alternative signal processing, data fusion, full-orbit simulation

Airborne radar (KuROS, SWIM+SCAT geometry)

Assimilation schemes and impact studies in wave prediction models

New L2-L3-L4 products from Sentinel 1 (and ASAR-ENVISAT)

► SCAT

End to end simulator: wind fields (acamedic), platform/orbit conditions => radar signal => inversion

work still going on for: σ_0 regrouping on regular grid to optimize the wind retrieval

Airborne SCAT

Preparation for data analysis and geophysical CAL/VAL (2/2)

- ►CAL/VAL (2018)
 - External CAL
 - Homogeneous extended targets (wind forest,...)
 - ground receivers (SCAT)
 - Geophysical VAL (SWIM and SCAT)
 - Use of global data sets (in situ observations, other satellite missions, models,..)
 - specific campaigns (Europe, China (TBC),..)
 - Call for opportunity to be issued (2015) : will be open to the community

Synergy of multi-incidence observations (1/2)

- To improve or extend inversion of geophysical products from Ku-Band observations
 - Influence of long waves or wave development on σ_0 -wind relationship (SWIM+SCAT)- see poster by He Wang (HY-2 SCAT winds)
 - •Combine SWIM (wind wave direction) and SCAT(wind vector) data to extend the domain or the accuracy of measurement: short wind waves (20-50 m in wavelength for SWIM, wind vector close to nadir for SCAT (where diversity of azimuth is small)
 - Estimate new parameters which impact air/sea exchanges:
 - Wave age, (wave development), mean steepness (SWIM-SCAT)
 - Statistics of ocean surface waves (slope pdf) (SWIM nadir + off-nadir)
 - Refine the influence of spectral properties of ocean waves on altimeter sea state bias (SWIM nadir + off-nadir + other altimeter missions

Synergy of multi-incidence observations (2/2)

► To study and model wave physics and coupling at the interface

- Impact of long waves on stress
- Swell dissipation (ocean and air component)
- Short wave properties in presence of long waves
- •Wind-waves and swell, complex sea situations

4 wave system from Sentiell 1 SAR

5 wave system from WW3 model ! •

Conclusion

- CFOSAT is a world premiere mission : simultaneous measurements of wind (SCAT) and directional spectra of ocean waves (SWIM)
- Access for the first time in space to 2D wave spectrum over the whole energetic spectrum (~70-500m) at global scale, potential for complex sea situations (multi-wave systems)
- SCAT: implementation of a **new type** of Scat (Rotating Fan-Beam)
- SWIM is a new spaceborne instrument with technological innovations
 Rotating antenna, n-board advanced digital processing
- CFOSAT, as a new component contributing to spatial oceanography systems, will:
 - •Serve the operational community (wind/wave forecast, ocean surface analysis for ocean model forcing)
 - Serve the scientific meteo-oceanographic community (new data for studying wind/wave/flux/boundary layers interactions)
 - Reinforce international multi-mission observation strategy for a better survey of the ocean surface

Invitations to tender to be issued for science & applications (non-real time data at least)

Thank you!