Aquarius Wind Speed Retrievals and Implications for SMAP Ocean Vector Winds

Alex Fore, Simon Yueh, Wenqing Tang, Julian Chaubell, Gregory Neumann, Akiko Hayashi, and Adam Freedman

© 2014 California Institute of Technology, Government Sponsorship acknowledged

Model Function Generation

- Collocate with both SSMI/S and WindSat wind speed, rain rate, and NCEP wind vectors.
 - Require < 1 hour offset; average all data that fall within 25 km of Aquarius location.
 - Exclude non-zero rain-rates.
 - Use SSMI/S / WindSat wind speed with NCEP wind direction.
- Have included corrections for significant wave height (SWH).
- Rain corrections have also been included in the model function.

Aquarius / SSMI/S Match [%]

Ocean Comparison Aquarius HH / PALSAR HH

Plot of PALSAR HH GMF (black square) and our Aquarius HH GMF (red o).

-Compute wind speed PDF weighted mean ratio of Aquarius GMF divided by PALSAR GMF.

Beam	1	2	3
Mean Ratio [dB]	0.57	0	-0.95

Aquarius Active Model Function

HH (top),VV (bottom); Beam 1 (left), 2 (middle), and 3 (right) Note flat / non-monotonic behavior near ±90 degrees relative azimuth

Aquarius Passive Model Function

H emissivity (top), V emissivity (bottom); Beam 1 (left), 2 (middle), and 3 (right)

Aquarius Scatterometer-Only Wind Speed Algorithm

- Use σ_0 HH and VV polarization.
- With only one azimuthal look, require additional information to constrain problem.
 - Assume the wind direction from NCEP
 - Retrieve best wind speed given the σ_0 HH, σ_0 VV, and NCEP wind direction.
- Flatness in model function causes significant problems at cross-wind (±90) relative azimuth angles.
 Scatterometer-Only Cost Function:

$$J = -\left[\frac{\left(\sigma_{0,HH}^{gmf} - \sigma_{0,HH}^{obs}\right)}{kp_{HH}\sigma_{0,HH}^{obs}}\right]^2 - \left[\frac{\left(\sigma_{0,VV}^{gmf} - \sigma_{0,VV}^{obs}\right)}{kp_{VV}\sigma_{0,VV}^{obs}}\right]^2$$

Triple-Collocation Results (SCAT)

The scatterometer-only wind speed product has performance within 0.1 m/s RMS of QuikSCAT

	Bias	Slope	RMS Error
SSMI	0	1	0.6767
ECMWF	0.2700	0.9590	0.8461
SCAT 2.10.1	-0.2193	1.0386	0.9337

	Bias	Slope	RMS Error
SSMI	0	1	0.6373
QuikSCAT	0.4890	0.9477	0.9535
SCAT 2.10.1	0.0418	1.0036	0.9448

Aquarius Combined Active / Passive Retrieval

- Use σ_0 HH, σ_0 VV, T_{BH} , and T_{BV} observations.
 - Requires ancillary sea-surface temperature values.
 - Requires accurate estimate and removal of galaxy.
 - We include significant wave height and rain in the model function when ancillary data are available.
- Simultaneous retrieval of Ocean vector wind and sea surface salinity.

Combined Active/Passive Cost Function:

$$F_{ap}(SSS, w, \phi) = \frac{(T_{BV} - T_{BVm})^2}{\Delta T^2} + \frac{(T_{BH} - T_{BHm})^2}{\Delta T^2} + \frac{(\sigma_{VV} - \sigma_{VVm})^2}{k_{pc}^2 \sigma_{VV}^2} + \frac{(\sigma_{HH} - \sigma_{HHm})^2}{k_{pc}^2 \sigma_{HH}^2} + \frac{(w - w_{NCEP})^2}{\Delta w^2} + \frac{\sin^2((\phi - \phi_{NCEP})/2)}{\delta^2}$$

$$Q = T_{BV} - T_{BH} \qquad I = T_{BV} + T_{BH}$$

Histogram of CAP vs SSMI/S Speed

Triple-Collocation Results (CAP)

The CAP wind speed product has performance that is about 0.1 m/s better than QuikSCAT, and is nearly the same as SSMI/S

Wind Speed	Bias	Slope	RMS Error
SSMI	0	1	0.7258
ECMWF	0.2207	0.9656	0.8075
CAP 2.10.1	-0.2652	1.0561	0.7291

Wind Speed	Bias	Slope	RMS Error
SSMI	0	1	0.6398
QuikSCAT	0.4868	0.9480	0.9520
CAP 2.10.1	0.0010	1.0339	0.8364

Triple-Collocation Results (CAP)

The vector triple-collocation results suggest that the CAP wind direction is not as good as that from QuikSCAT.

U Component	Bias	Slope	RMS Error
ECMWF	0	1	0.7882
QuikSCAT	-0.0146	1.0059	1.2073
CAP 2.10.1	-0.0175	1.0238	1.3166

V Component	Bias	Slope	RMS Error
ECMWF	0	1	0.7804
QuikSCAT	-0.0385	1.0222	1.1817
CAP 2.10.1	-0.0934	1.0340	1.5697

Potential of Combined Active/Passive L-band

- Hurricane / High winds
- One platform for Ocean vector winds, salinity and soil moisture.
- We are very interested in SMAP data over the ocean to see what L-band is capable of!
 - Hurricanes
 - L-band scatterometery

Hurricane Katia

NCEP Wind (black)

Aquarius CAP Data Distributed via PO.DAAC

- Aquarius CAP product is processed at JPL
 - Sea surface salinity
 - Ocean wind speed
 - Ocean wind direction
- CAP V2.8.1 L2 and L3 products available at PO.DAAC
 - <u>http://podaac.jpl.nasa.gov/seasurfacesalinity</u>
 - Follow FTP Data Access link

Summary

- Model functions for Aquarius generated using SSMI/S, SWH, and NCEP wind direction
- Wind performance:
 - The scatterometer-only wind speed performance is slightly worse than that for QuikSCAT
 - The Combined active/passive wind speed performance is better than that of QuikSCAT, however the direction is worse.
- Salinity Performance:
 - CAP has a monthly RMS difference with ARGO that is less than the V2.10.1 data product.
 - Including the effects of rain in the salinity model function seem to give additional improvements.
 - We seem to have achieved the 0.20 psu salinity performance that was the goal for Aquarius monthly data products.
 - There is an overall zonal bias that still needs to be corrected.

Water Cycle in Indian Subcontinent Illustrated by Aquarius Data

Aquarius Soil Moisture and SSS Data

August 2011

Sea Surface Salinity Comparison with ARGO monthly maps (Sept. 2011 – Dec. 2013) V2.10.1 RMS Difference Bias (Aquarius-ARGO)

 $-0.5 \ -0.4 \ -0.3 \ -0.2 \ -0.1 \ 0.0 \ 0.1 \ 0.2 \ 0.3 \ 0.4 \ 0.5$

SSS Monthly RMS difference w.r.t. ARGO between 40S-40N, V2.10.1

No RED flags applied, V2.10.1

SSS Monthly root-mean-square difference between 40S-40N, excluding EPFP and ARO, V2.10, 1 ED flags applied, V2.10.1

Aquarius SSS, Wind, and Soil Moisture Products

Aquarius soil moisture from Jackson and Bindlish; SSMI/S rain from RSS