GCOM-W2 Water & Winds Mission

Mark Bourassa Florida State University

With a lot of input from: Ernesto Rodriguez, Dudley Chelton, David Long, Nikolai Maxeminko, Frank Wentz, and Shang-Ping Xie And additional input from: Brent Roberts, Darren Jackson, Ziad Haddad, Ralph Milliff, and Gary Wick

Outline

- Instrumentation (short version)
 - ➤ A scatterometer by itself in not likely to be funded
 - Success depends on exciting science goals
- International Partners
- > Paths to funding US component
- Science Objectives

Instruments to Meet Science

- An AMSR class radiometer with additional high frequency channels for cloud ice (AMSR3)
- Pencil beam scatterometers
 - ➤ Ku-band (10km nominal resolution)
 - Doppler Ka-band (5km nominal resolution for winds)
 - ≻Ocean current measurements
 - ≻ Spatial resolution: <25 km
 - ≻ Temporal resolution: <10 days
 - > Vector velocity accuracy: 5 cm/s 10 cm/s
- > Key innovations:
 - High resolution winds for coastal applications and calculation of small scale (3x scatterometer spacing) divergence and curl
 - Surface currents
- Many science application benefit by co-flying active/passive combination

Ongoing Studies

- JAXA, ISRO, and JPL have signed a letter of cooperation to jointly study the feasibility of a joint microwave radiometer/scatterometer mission
- Preliminary discussions have resulted in a nominal configuration including AMSR3, Ku scatterometer, Ka Doppler scatterometer
- A joint team developed a draft science and operations requirement document that will be available for community inputs
- If accepted by the agencies, the nominal launch date would be around 2020

ISRO/JAXA/JPL Partnership

- Indian Space Research Organization (ISRO)
 - ➤ Will provide Ku-band scatterometer
 - Possibly provide the launch vehicle

≻Hope to finalize late in June

- Government interest is largely operational
- Japanese Aerospace Exploration Agency (JAXA)
 - Providing the AMSR3 instrument (radiometer)
 - Providing the satellite bus
- Jet Propulsion Laboratory
 - Providing Ka-band Doppler scatterometer

Paths to Funding US Component

- Short-term (for 2020 or 2021 launch)
 - ➤ NASA Earth Ventures (all dates below in fiscal year)
 - ≻EV Instrument (to be released early in 2015; \$90M cap)
 - ≻EV Mission (to be released in Spring 2015; \$150M cap)

Mission	Mission Type	Release Date	Selection Date	Major Milestone
EVI-3	Instrument Only	Q2 FY2015	Q1 FY2016	Delivery NLT 2020
EVI-4	Instrument Only	Q4 FY2015	Q3 FY2016	Delivery NLT 2021
EVM-2	Full Orbital	Q3 FY2015	Q2 FY2016	Launch ~2021
EVI-5	Instrument Only	2017	2018	Delivery NLT 2023
EVS-3	Suborbital	2017	2018	N/A
EVI-6	Instrument Only	2019	2019	Delivery NLT 2024

Long-term – decadal survey (with more cloud & surface coupling)

Science Goals

- GCOM-W2 was originally conceived of for examination of the water cycle
- > We have goals related to
 - ≻ Water cycle
 - Energy budgets
 - Ocean forcing
 - ➢ Wind and SST coupling
 - Cloud and surface coupling
 - Continuity of climate data records
 - \succ Ice motion
 - \triangleright And a few others
 - A science and operational requirements document is available for those interested (email mbourassa@fsu.edu)

Cloud and Surface Wind Coupling

- Snapshots of rainfall rate from NICAM 3.5 km "MJO" run.
- Top: snapshot of rainfall rate indicates mesoscale convective systems.
- Bottom: Heavy rainfall (black contour) associated with surface wind *divergence* (blue), presumably related to cold pool dynamics.

Rainfall rate (mm/h)

Link in Long-Term Changes in SST and Precipitation

- Xie and others argues that changes in SST patterns have substantial impacts on changes in the water cycle
- Wentz, Yu and others have found that the change in surface evaporation is highly influenced by changes in surface winds
- Liu, Hilburn and others have shown links between winds and moisture transport

Graphic courtesy Shang-Ping Xie

Climate Record Quarter-Century Trends from Satellites

Trend in Wind Speed (m/s per decade)

Trend in Total Column Water Vapor (kg/m² per decade) -2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5

Coupling Between SST and Winds

The Coupling Between SST and Wind Speed in 4 Frontal Regions (Gulf Stream, Kuroshio Extension, Agulhas Return Current and Brazil-Malvinas Current)

Small Scale (<600km) Changes in Fluxes

Modeled changes in fluxes due to changes in wind speed caused by SST gradients

- Monthly average for December
- Small scale changes are large compared to accuracy requirements
- W/m² ➤ This spatial variability is currently not in reanalyses
 - This spatial variability should be considered in evaluating the observing system

Graphic courtesy of John Steffen

Surface Turbulent Fluxes

- Sensible and latent heat fluxes contribute to the energy budget
 - ➤ Latent heat is proportional to evaporation
- These turbulent fluxes are determined from bulk flux parameterizations, which are functions of
 - ➤ Wind speed
 - Surface current
 - Sea surface temperature
 - ≻ Near surface (e.g., 10m) air temperature
 - ≻ Near surface (e.g., 10m) humidity
 - Surface pressure (weak dependence)
 - ≻ Sea state

Surface Turbulent Fluxes

- Sensible and latent heat fluxes contribute to the energy budget
 - ➤ Latent heat is proportional to evaporation
- These turbulent fluxes are determined from bulk flux parameterizations, which are functions of
 - Wind speed relative to the surface (scatterometer)
 - → Surface current
 - Sea surface temperature (AMSR3)
 - ≻ Near surface (e.g., 10m) air temperature (AMSR3 + Scat)
 - ➤ Near surface (e.g., 10m) humidity (AMSR3 + Scat)
 - → Surface pressure (weak dependence)
 - → Sea state
- Retrievals for air temperature and humidity have greatly improved in recent years.

Comparison of Two Retrieval Techniques

Evaluation of Satellite Retrievals of 10m Ta and Qa

 Comparison to research vessel observations from SAMOS

Smith, S. R., M. A. Bourassa, and D. L. Jackson, 2012

Consequences of Changes in Surface Heat Fluxes

- Changes in oceanographic circulation
- Storms over western boundary currents have a tilt
 - Induces a vertical circulation that helps pump moisture into the free atmosphere
 - How do these changes in fluxes impact flux into free atmosphere and down stream climate?
 - How important is the cloud coupling with surface winds and fluxes?

Importance of satellite measurement of surface currents

- Satellite measurement would provide the first global map and periodic monitoring of surface current
- Surface currents are difficult to derive theoretically because they are sensitive to details of the mixed-layer model. Satellite measurements will help to improve models of vertical momentum exchange in the upper ocean.
- ➢ Ocean is largely driven by wind. While wind stress τ is momentum air-sea flux, knowing collocated τ and surface velocity V also allows computation of kinetic energy flux (or wind work on the ocean): $A = \rho \cdot \tau \cdot V$
- Improved spatial resolution allows to move observations closer to the coast, where:
 - Fast western and eastern ocean boundary currents play important roles in basin-wide balances
 - Wind stress curl, induced by wind interaction with eastern ocean boundaries and with islands, generates beta-plumes, extending westward across entire oceans.

Slide courtesy Nikolai Maximenko

2. Surface currents are difficult to derive theoretically because they are sensitive to details of the mixed-layer model. Satellite Mixing coefficient, cm²/s measurements will help to improve models of vertical 0 momentum exchange in the upper ocean. τ/Η 5 10 15 In figures: difference between solutions of three simple Ekman depth, m models is largest at the sea surface 20 Ekman spirals 25 2 30 0 35 τ -2 40 50 150 0 -4 0 5 -6 10 U -8 15 depth, m -10└ -5 5 15 20 0 10 U, cm/s 25 2. Also need to add Stokes drift and near surface turbulence 30 (see work of Weber and Jenkins among others) 35 Slide courtesy Nikolai Maximenko 40 -10 -5 0 10 15 -15 5 Ekman velocity components, cm/s

Conclusion

- There are tremendous opportunities with a the combination of a scatterometer and a radiometer.
- For an Earth Ventures proposal to be successful we need to build a strong science case.
 - ➤ Your input is welcome
 - \succ We will focus on no more than three topics
 - Coupled surface and boundary-layer processes impacting energy and water cycle?
 - ≻Arctic circulation?
 - ≻Coastal winds and??
 - And hidden in there, the climate record
 - Other topics will be listed with a short description and linked to the three main topics

Backup

Overview of AMSR Instrument

Deployable main reflector system with 2.0m diameter (1.6m for AMSR-E).

Frequency channel set is identical to that of AMSR-E except 7.3GHz channel for RFI mitigation.

- Two-point external calibration with improved HTS (hot-load).
- Add a redundant momentum wheel to increase reliability.

GCOM-W1/AMSR2 characteristics		AMSR2 Channel Set					
Scan and rate	Conical scan at 40 rpm	Center Freq. [GHz]	Band width [MHz]	Pol.	Beam width [deg] (Ground res. [km])	Sampling interval [km]	
Antenna	Offset parabola with 2.0m dia.	6.925/	350		1.8 (35 x 62)		
Swath width	1450km (effective 1600km)	7.3					
Incidence angle	Nominal 55 degrees	10.65	100	v	1.2 (24 x 42)	10	
Digitization	12bits	18.7	200	and H	0.65 (14 x 22)		
Dynamic range	2.7-340K	23.8	400		0.75 (15 x 26)		
		36.5	1000		0.35 (7 x 12)		
Polarization	Vertical and horizontal	89.0	3000		0.15 (3 x 5)	5	

Courtesy K. Imaoka, JAXA

Potential AMSR Enhancements

Examples of Tb simulations: TB(157V & 190V) for ϵ_s =0.7 & 0.95

Provided by Dr. Kazumasa Aonashi of MRI/JMA.

Ocean Vector Wind Working Group meeting, October 7, 2013, Boulder N. Maximenko: Satellite ocean surface currents and winds

Surface currents are not well measured

1,051 active drifters (approx. 1 drifter per 4x4 degree bin; probably 30-50% are undrogued) 3659 active Argo floats (3659 / 10 days * 10 hours ≈ 152 continuous sites) Ocean Vector Wind Working Group meeting, October 7, 2013, Boulder N. Maximenko: Satellite ocean surface currents and winds

Surface currents are not well modeled

Why even most reputable models do not care about discrepancy with observations?

(Jim Potemra, 5th Int. Marine Debris Conference, 2011)

Icebergs Increasing?

Much of the apparent NIC increase is an artifact of better iceberg tracking technology

Recent calvings of Ross and Ronne Ice shelves are within the range of expected variation

OSCAT Sensitivity to Canopy Water Content

- > Nadir pointing instruments have much greater penetration of canopy
- QSCAT-like scanning pencil beam is more sensitive to upper layer of vegatation

10/7/42

Graphic courtesy S. Saatchi

Persistent Effects of Severe Drought on Amazonian Forest Canopy

Graphic courtesy S. Saatchi

Mesoscale Features in Near Coast

