Wind Retrieval from Synthetic Aperture Radar Operating at Cross Polarization

ONR DRI 32 ITOP Impacts of Typhoons on the Ocean in the Pacific

J. Horstmann^{1,2}, S. Falchetti² C. Wackerman³, R. Foster⁴, M. Caruso⁵ and H. Graber⁵

 28.00°

¹Helmholtz-Zentrum Geesthacht, Germany ²Center for Maritime Research and Experimentation, Italy ³General Dynamics, USA ⁴APL, University of Washington, USA ⁵Center for Southeastern Tropical Advanced Remote Sensing, USA

Why SAR for Wind Field Retrieval

Helmholtz-Zentrum Geesthacht

SAR Wind Direction Retrieval via Helmholtz-Zentrum Geesthacht the Local Gradient Method (WiSAR) Zentrum für Material- und Küstenforschung **Local Gradient Method** $(B^2B^4_{xy})^3 \Box$ Sobel \Box $(B^2B^4_{xy}) \Box$ **Binomial filter** 2 dim. B² Filter 2 dim. B⁴ Filter **Optimized Sobel-Filter** 3 0 -3 3 10 3 10 0 -10 → 0 0 0 3 0 -3 -10 -3

SAR Wind Speed Retrieval via a Geophysical Model Function (GMF)

Helmholtz-Zentrum Geesthacht

Zentrum für Material- und Küstenforschung

Geophysical Model Function

 $\sigma_0^{pol} = a(\theta)u^{\gamma(\theta)}[1+b(\theta)\cos\phi + c(\theta)\cos(2\phi)]$

SAR-Retrieved Winds (co-pol) in Comparison to QSCAT and SFMR

Estimation of Wind Field Uncertainties and GMF Limitations

Helmholtz-Zentrum Geesthacht Zentrum für Material- und Küstenforschung

definition

Wind speed uncertainty

Noise Correction of Radarsat-2 Cross Pol NRCS

Dependence of NRCS on Wind Speed (Including Noise Floor)

Helmholtz-Zentrum Geesthacht

Dependence of NRCS on Wind Speed (Noise Floor removed)

Helmholtz-Zentrum Geesthacht

Additional Dependencies of Cross-pol NRCS

φ [°]

Helmholtz-Zentrum Geesthacht

Zentrum für Material- und Küstenforschung

θ [°]

up/down wind cross wind fanapi 13 malakas22 malakas24 fanapi17 megi14 = 10 ± 1 m/s = 10 ± 1 m/s U, = 10 ± 1 m/s -20 -20 -20 Τ -40 -40 -40 -60 -60 -60 100 200 300 20 30 40 20 30 40 0 = 15 ± 1 m/s 15 ± 1 m/s 15 ± 1 m/s -20 -20 -20 σHV -40 -40 -40 -60 -60 -60 100 200 300 20 30 40 20 30 40 0 20 ± 1 m/s = 20 ± 1 m/s = 20 ± 1 m/s -20 -20 -20 JHV -40 -40 -40 -60 -60 -60 100 200 30 40 20 30 40 0 300 20

θ [°]

Modelling of the NRCS Excluding Cross Talk

Helmholtz-Zentrum Geesthacht

Modelling of the NRCS Including Cross Talk (-32 dB Isolation)

Helmholtz-Zentrum Geesthacht

Radarsat-2 Crosspol (HV) Retrieved Wind Speeds

Radarsat-2 HV image of Typhoon Megi 17. Sep 2010

Comparison of Co- and Cross-pol Retrieved Wind Speeds to SFMR

Typhoon20 Sep. 2010Malaksaat 20:29 UTC

Validation of Co-pol and Cross-pol GMF with SFMR and Dropsondes

Horstmann et al., TOS 2013

Summary & Outlook

SAR wind directions from orientation of linear features (rms of 18°, lack of inflow)

Filters have been developed to flag:

- non wind induced areas
- areas with uncertain wind speeds

C-band cross pol GMF developed (significantl improvement in high wind speeds >25 m/s)

Further investigation of cross pol with respect to wind direction and incidence angle Merging of co-pol and cross pol retrieved winds

What about rain under cross pol?

Comparison of Co- and Cross-pol Retrieved Wind Speeds to SFMR

Hurricane 2 Sep. 2010 Earl at 22:59 UTC

SAR Typhoon Processing System

Zentrum für Material- und Küstenforschung

Pressure

Wave direction

Wave height

Wind direction

APL pressure

CSTARS wave

GD waves

Wind Speed

Eye Location

Automated Removal of Sensor Artifacts and Careful Calibration

Helmholtz-Zentrum Geesthacht

Merging Wind Directions from Helmholtz-Zentrum Geesthacht **GD** with WiSAR

General Approach for Ocean SAR Wind Field Retrieval (WiSAR)

Geophysical Model Function

 $\begin{aligned}
\int \int \partial \theta &= a(\theta) u^{\gamma(\theta)} [1 + b(\theta) \cos \phi \\
&+ c(\theta) \cos(2\phi)]
\end{aligned}$

Helmholtz-Zentrum

Geesthacht

Comparison of Co- and Cross-pol Retrieved Wind Speeds to SFMR

GMF	Bias [m]	Standard	Correlation
		Deviation [m]	
Co pol GMF	0.4	6.42	0.75
HV GMF	0.11	3.75	0.83
HV GMF wind	-0.69	3.79	0.85
direction dependent			
VH GMF	-1.48	3.22	0.8

Removal of SAR artifacts e.g. Scalloping

Romeiser et al., TGARS 2012

Scalloped

Descalloped

Scalloped

Descalloped

Development of X-band GMF for Wind Speed Retrieval

Validation for Moderate Winds

36 Cosmo-SkyMed imagery 25 km grid (782 co-locations)

Thompson et al., JGR 2012

TerraSAR-X image of Typhoon Megi 21. Oct 2010 22:05 UTC

Development of Cross-pol G Fit to SAR Co-pol Winds

Radarsat-2 HV image of Typhoon Megi 17. Sep 2010

Ongoing and Outlook

Helmholtz-Zentrum Geesthacht Zentrum für Material- und Küstenforschung

Ingestion of SAR wind fields into HWIND

HWIND with in situ and SFMR

HWIND solely with SAR wind field

ECMWF winds

- Validation of the X-band GMF at high wind
- Investigation of X-band cross pol
- Merging of the co- and cross pol information for a even better wind product
- Including wave information in the wind retrieval

Validation of SAR-Retrieved Wind Directions with QuikScat Winds

Horstmann et al., TOS 2013

Noise Correction of Radarsat-2 Cross Pol NRCS

Helmholtz-Zentrum Geesthacht

Comparison of Co- and Cross-pol Retrieved Wind Speeds to SFMR

SAR-Retrieved Wind Field and Comparison to QuikScat data

Helmholtz-Zentrum Geesthacht

Comparison of Radar Retrieved Wind speeds to *in situ* **Measured**

Estimation of Friction Velocity from Radar Measurements via GMF

 $\sigma_0 \stackrel{\text{GMF}}{\longrightarrow} u_{10}$

 $u_{10} \xrightarrow{\text{TC 3.x}} u^*$ assuming neutral stability

Noise Correction of Radarsat-2 Cross Pol NRCS

Helmholtz-Zentrum Geesthacht

