Retrieving Surface Wind Directions from Neural-Net Wind Speed Retrievals in Tropical Cyclones

Ralph Foster, Applied Physics Laboratory, University of WA
Jerome Patoux, Atmospheric Sciences, University of WA

NASA Ocean Vector Winds Science Team
Based on SAR Tropical Cyclone (TC) Wind Retrievals
(See Horstmann, 17:45)

• SAR: 1 km wind vector retrievals in TCs
 (Horstmann, Wackerman)
 – Wind directions from imprint of TC boundary layer
 (TCBL) roll vortices
 – Wind speeds from model functions (CMOD5N (co-
 pol), Cross-pol, X-band
 – ~ 5-6 m/s RMS at hurricane force (up to low Cat-3)
 – Directions ~ 20°RMS rel. drop sondes, QuikSCAT
 (no-rain flag)
 – Wind retrieval quality flags
Calculate Sea-Level Pressure (SLP) Patterns from SAR imagery

1. SAR σ_0
Calculate Sea-Level Pressure (SLP) Patterns from SAR imagery

1. SAR σ_0
2. Standard U_{10} processing
 - Mask low confidence winds
Calculate Sea-Level Pressure (SLP) Patterns from SAR imagery

1. SAR σ_0
2. Standard U_{10} processing
 - Mask low confidence winds
3. Calculate pressure gradient vectors, ∇P, from U_{10} using Tropical Cyclone Boundary Layer (TCBL) model
Calculate Sea-Level Pressure (SLP) Patterns from SAR imagery

1. SAR σ_0
2. Standard U_{10} processing
 - Mask low confidence winds
3. Calculate pressure gradient vectors, ∇P, from U_{10} using Tropical Cyclone Boundary Layer (TCBL) model
4. Least-squares fit of pressure surface to ∇P vectors
 - Constraint: $\nabla \cdot V_{Geostrophic} = 0$
 - Scene-wide dynamical consistency
 - Normalize to observations (optional)
Calculate Sea-Level Pressure (SLP) Patterns from SAR imagery

1. SAR σ_0
2. Standard U_{10} processing
 – Mask low confidence winds
3. Calculate pressure gradient vectors, ∇P, from U_{10} using Tropical Cyclone Boundary Layer (TCBL) model
4. Least-squares fit of pressure surface to ∇P vectors
 – Constraint: $\nabla \cdot V_{Geostrophic} = 0$
 – Scene-wide dynamical consistency
 – Normalize to observations (optional)
5. Use SLP pattern to force TCBL model and derive “SLP-filtered” surface wind vector field
 – Fill-in masked regions
TCBL: Nonlinear *Mean Flow* Dynamics are Important

- “Standard” PBL Scaling: $U \cdot \nabla U \ll \overline{u' \cdot \nabla u'}$
- Typhoon TCBL scaling: $U \cdot \nabla U \sim \overline{u' \cdot \nabla u'}$
- Fully nonlinear TCBL model (Foster, 2009) currently too costly

\[U_{total} = U + u' \]

(rotated into surface wind coordinates)

- Approximate nonlinear mean flow dynamics using gradient wind model
- Storm-relative correction

\[\frac{1}{\rho} \frac{dP}{dn} = f V_g \left(1 + \frac{V_g}{f R} \right) \]

\[R = \alpha r; \quad \alpha \sim 0.65 \]
Two-Layer TCBL Model:

- Analytic match of inner and outer layers
- Inner (surface) layer
 - COARE/CBLAST-like surface layer
 - $C_{D_{max}} = 2.7 \times 10^{-3}$ for $U_{10} > \sim 30 \text{ m s}^{-1}$
 - $C_{H} \sim \text{const}$, when stratification is included
- Outer layer
 - Nonlinear mean flow dynamics
 - TCBL depth increases with radius
- Assume TC interior close to gradient-wind, V_g, balance
 - $U_{10} = U_{10}(V_g)$ “direct model”
 - $V_g = V_g(U_{10})$ “inverse model”
TCBL: Mean boundary layer depth increases with radius

- Swirling flow:
 - Positive Rayleigh discriminant defines gradient wind-dependent time scale
- \(I < f \), inner core; \(I \to f \) as \(r \to \infty \)
- \(\delta = \sqrt{2K_m/I} \)

\[
l^2 = \left(f + \frac{2V_g}{r} \right) \left(f + \frac{V_g}{r} + \frac{\partial V_g}{\partial r} \right)
\]

Cat-1 Typhoon Malakas

- Malakas 22 Sep, 2010, 20:30 UTC
- AF C-130J arrived 15 minutes after SAR overpass
- SFMR & 28 Drop Sondes
Malakas 22 Sep: Drop Sonde Surface Pressure

- RMSE = 1.7 mb
- $N = 28$

$\frac{N(N-1)}{2} = 378 \text{ pairs of sondes}$

- SLP pair-wise differences (PWD) give sense of SLP pressure shape retrieval

- SLP RMS < 2 mb
- SLP Pair-Wise Difference (PWD) RMS < 2.5 mb
Five SAR Scenes Compared to Drop Sonde Surface Pressure

<table>
<thead>
<tr>
<th></th>
<th>SLP Bias (mb)</th>
<th>SLP RMS (mb)</th>
<th>PWD Bias (mb)</th>
<th>PWD RMS (mb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAR</td>
<td>0.1</td>
<td>2.8</td>
<td>0.6</td>
<td>2.9</td>
</tr>
</tbody>
</table>

- Overall ~3 mb RMS compared to drop sondes

Lili 30 Sep, 2002
Katrina 27 Aug, 2005
Helene 20 Sep, 2006
Ike 13 Sep, 2008
Malakas 22 Sep, 2010
Malakas 22 Sep, 2010: Drop Sonde Surface Wind

<table>
<thead>
<tr>
<th></th>
<th>Speed RMS Good, N = 22 (m/s)</th>
<th>Speed RMS All, N = 28 (m/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RAW</td>
<td>3.3</td>
<td>5.6</td>
</tr>
<tr>
<td>SLP-Filter</td>
<td>3.2</td>
<td>3.9</td>
</tr>
</tbody>
</table>

RAW winds in masked regions
Malakas 22 Sep, 2010 20:30: SFMR

<table>
<thead>
<tr>
<th>Condition</th>
<th>N</th>
<th>RMS (m/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Good Only</td>
<td>5,454</td>
<td>3.4</td>
</tr>
<tr>
<td>RAW</td>
<td></td>
<td>3.4</td>
</tr>
<tr>
<td>SLP-Filter</td>
<td></td>
<td>3.4</td>
</tr>
<tr>
<td>Masked Only</td>
<td>4,427</td>
<td>6.1</td>
</tr>
<tr>
<td>RAW</td>
<td></td>
<td>6.1</td>
</tr>
<tr>
<td>SLP-Filter</td>
<td></td>
<td>4.9</td>
</tr>
<tr>
<td>All Data</td>
<td>9,881</td>
<td>7.8</td>
</tr>
<tr>
<td>RAW</td>
<td></td>
<td>7.8</td>
</tr>
<tr>
<td>SLP-Filter</td>
<td></td>
<td>4.2</td>
</tr>
</tbody>
</table>

- SLP-filtered and RAW winds are equal quality in good region
- SLP-filtered winds are better quality than RAW winds in masked region
- SLP-filtered winds have overall lower RMS

Black: SFMR wind speed
Blue: RAW input wind (unmasked)
Red: SLP-filtered
Cyan: SFMR Rain Rate

Not plotted
Five SAR Scenes Compared to SFMR

- **SLP-filtered wind RMS is the same in good and masked regions**
- **RAW winds in masked region are lower quality than RAW winds in good region**
- **SLP-filtered winds has lower RMS overall**

Good Only
- **RAW**: 5.7 m/s
- **SLP-Filter**: 5.5 m/s

Masked Only
- **RAW**: 8.6 m/s
- **SLP-Filter**: 5.4 m/s

All Data
- **RAW**: 7.4 m/s
- **SLP-Filter**: 5.4 m/s

Dates:
- **Lili**: 30 Sep, 2002
- **Katrina**: 27 Aug, 2005
- **Helene**: 20 Sep, 2006
- **Ike**: 13 Sep, 2008
- **Malakas**: 22 Sep, 2010
QuikSCAT Neural Net GMF
(See Stiles, 17:00)

• Special Speed-only GMF for TCs
 – 10 years of data at JPL:
 http://tropicalcyclone.jpl.nasa.gov/hurricane/gemain.jsp
 – NN trained to 2005 H*WIND
 – 12.5 km pixels

• Scatterometer wind directions are **bad** in TC inner core
 – Fix with ZU-SLP retrieval iteration
Hurricane Bill
20 Aug 2009, 09:45
QuikSCAT NN

Note: “squared-off” vortex shape & misplaced storm center
Deformation Flow from QuikSCAT
ZU-SLP directions
Investigation of Circulation Center

• Use initial guess at center (HRD, Best Track, etc.)
• Find metric based on circulation near RMW (radius maximum wind)
• Circulation center varies greatly over depth of TCs
 – Best track/HRD near flight level or “steering” level
 – Scatterometer data needs surface circulation center
Use flow partition analysis & SLP data to refine estimates of surface-level circulation center

- Best fit to SLP obs
- Find flow partition metrics e.g.:
 - Maximize circulation near RMW
 - Location of deformation cull
 - Comparison with numerical simulations (e.g. UMCM 3-way coupled model)
UMCM AWO (Ike, approaching landfall)

(First-look results of UMCM modeling system TCBL response to wave model)

(Not rotated in rad/tan contributions)

UMCM AWO (Ike, approaching landfall)
Note smaller Convergent radial flow Magnitudes Compared to SR Urad
Future Research

• Upgrade TCBL model in SLP retrieval
 – Improve nonlinear dynamics ala Foster (2009)

• Use SLP to improve wind directions for scatterometers in TC conditions
 – Iterate SLP/partition analysis

• Combine with upper-level winds to study in→up→out TC-scale secondary circulation
 – Flow partitions at two levels

• Investigate TC TCBL roll vortices (SAR)
 – TCBL parameterization
 – Improve SAR wind directions
Summary

- Developed new methodology to calculate Sea-Level Pressure patterns from SAR images of Tropical Cyclones
 - 1 km pixels
 - <3 mb RMS compared to drop sondes
- Scene-wide SLP-filtered surface winds
 - Similar quality to RAW SAR winds in unmasked regions
 - Fills gaps where SAR winds are less certain (masked)
 - SAR wind speed comparable to SFMR RMS
 - SAR has more coverage
 - Cat2 + model functions not well established or tested
 - Dynamically consistent SLP and SLP-filtered U_{10}
- Apply to Scatterometer NN data sets
 - Coarser resolution
 - Longer and larger data set (QuikSCAT)
 - OSCAT & ASCAT scatterometers currently operational
 - RapidSCAT & HSCAT coming
Malakas 22 Sep, 2010

RAW SAR wind vectors
Mask less certain winds

SLP-filtered wind vectors
SLP contours (4mb interval)

Masked regions tend to be high wind regions at low incidence

Superposed (adjusted for storm translation):
SFMR wind speeds
Drop sonde U_{10} and directions

(direcions every 40 km)
C-130J Surface Pressure

Black: C130 Sea-level Pressure from Flight Level Data
Red: SAR sea-level pressure
TCBL Model Development Needed for SLP Retrieval

• Approximated nonlinear mean flow dynamics
 – Storm-relative nonlinear dynamics corrections
 – Modified gradient wind correction
• Dynamical increase of TCBL depth with radius
 – Based on rotational “stiffness” of swirling flow
• High winds limit on $C_D^{\text{max}} = 2.5 \times 10^{-3}$