Deuterated Water and Surface Vector Winds in a Madden-Julian Oscillation Event

<u>Combining SVW from SeaWinds on QuikSCAT with δD from TES on Aura</u>

Ralph F. Milliff¹, David C. Noone^{1,2}, Lesley L. Smith¹ and Max Berkelhammer³

¹ CIRES, University of Colorado

² COAS, Oregon State University
 ³ Earth and Environmental Sciences, University of Illinois, Chicago

Motivation:

 $\diamond\,$ climate and intraseasonal importance of MJO

atmos rivers, monsoons, TC's, ENSO

- \diamond canonical example of organized convection
 - theoretical advances required; initiation, propagation, in-active phase multi-scale; BL and deep convection, MCS to global scales

♦ difficult to simulate, represent in GCMs

Exploratory study to:

 $\diamond\,$ detect multi-scale properties of the MJO

event-by-event; no composites to wash out fine-scale processes

 \diamond couple physics and hydrologic processes

borrow strength from abundant, accurate SVW to infer

hydrologic processes throughout troposphere

 \diamond is this nuts????

MJO: 12 Dec 2007-15 Jan 2008

--

HDO/H₂O isotope ratios from TES:

using v3 retrievals

-1.92e-05 -1.6e-05 -1.28e-05 -9.6e-06 -6.4e-06 -3.2e-06 0 3.2e-06 6.4e-06 9.6e-06 1.28e-05 1.6e-05 1.92e-05

Longitude vs. Time Plots:

Synoptic

→ <u>Mesoscale</u>

Spatial and Temporal Lag Covariances: Synoptic Case

with respect to Div4 for 1 Jan 2008 (left) and 135°E (right), respectively covariance computed for all available δD_{825}

look for outliers

infer synoptic signals with respect to negative OLR (contour)

temporal lag-covariances:

spatial lag-covariances:

Spatial and Temporal Lag Covariances: -> Mesoscale Case

with respect to Div4 for 1 Jan 2008 (left) and 135°E (right), respectively covariance computed for all available δD_{825}

look for outliers

infer *mesoscale* signals with respect to strong *convergence* (contour)

Spatial and Temporal Lag Covariances: Synoptic Case

135E

180

Spatial Lag Covariances with respect to 135°E:

covariances computed at δD_{825} locations every 5 days look for process-consistent outliers across variables: OLR, u, Div4

TES delta-D @ 825hPa (per mille)

12/9/07

12/21/07

01/02/08

joint and conditional distributions to identify conditional dependence

Conditional Distributions to Isolate Convergence and Subsidence Effects:

 $[\delta D_{825}|conv]$ $[\delta D_{825}|div]$ 4-grid-cell div>1.x10⁻⁵ and delta-D₈₂₅ 4-grid-cell conv<-1.x10⁻⁵ and delta-D₈₂₅ 0.00010 -0.000020 0.000080 QuikSCAT CONV4 (s⁻¹) 0900000-0-4 (s⁻¹) 0800000-0-0-4 (s⁻¹) 47 D0.000060 0.000020 -0.00010 -200 -150 -100 TES delta-D₈₂₅ (per mille) -200 -150 -100 TES delta-D₈₂₅ (per mille) -250 -50 -250 -50 0.04 0.1 0.16 0.22 0.28 0.34 0.4 0.46 0.52 0.58 0.64 0.7 0.76 0.82 0.88 0.94 1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

convergence; larger δD in BL

divergence; lower δD in BL

Summary

- Modeling the MJO will require better understanding of coupled physics and hydrology on multiple scales (convection – MCS – global; hourly – daily – 5d)
- Glimpses of multi-scale processes within a single MJO event are detectable from space synoptic vs. mesoscale spatial resolution (but <u>not</u> temporal)
- Evidence of surface to column covariances
 Convergence in SVW and δD large (small) in BL (aloft)
 Divergence in SVW and δD small in BL
 consistent with "last saturation model concepts"

<u>Plans</u>

- ♦ Rain; distinguish intense, localized convective rainfall from more moderate and widespread stratiform rainfall (QRAD?)
- \diamond δD anomalies with respect to Rayleigh distillation
- MJO BHM; impact of TES δD on MJO pdf's given multi-platform data stage inputs and relevant priors

Summary

- Modeling the MJO will require better understanding of coupled physics and hydrology on multiple scales (convection – MCS – global; hourly – daily – 5d)
- <u>Glimpses</u> of multi-scale processes within an MJO event are detectable from space synoptic vs. mesoscale spatial resolution (but <u>not</u> temporal)
- Evidence of surface to column covariances
 Convergence in SVW and δD large (small) in BL (aloft)
 Divergence in SVW and δD small in BL
 consistent with "last saturation model concepts"

<u>Plans</u>

- Rain; distinguish intense, localized convective rainfall from more moderate and widespread stratiform rainfall (QRAD?)
- \diamond δD anomalies with respect to Rayleigh distillation
- MJO BHM; impact of TES δD on MJO pdf's given multi-platform data stage inputs and relevant priors
- ♦ Improved space-time resolution, process-oriented multi-sensor system on a tropical orbiter

....just sayin'

TropSat!

EXTRAS