Utilization of multi-satellite data for construction of high-temporal resolution data and high-accuracy daily-mean data

> Masahisa Kubota(Tokai University), Atsushi Okuro(Tokai University), Shin'ichiro Kako(Kagoshima University)

2014 International IOVWST meeting June 2 –4, 2014 Ifremer (French Research Institute for Exploitation of the Sea) Brest, France



# Topics

- Evaluation of JAXA/AMSR2 and RSS/AMSR2 by Triton buoy data
- Construction of high-temporal resolution wind speed using multi-satellite data
- Investigation of accuracy of daily-mean data derived from of high-temporal resolution wind speed data
- Impact of high-temporal resolution version of latent heat flux



# **TRITON buoy data**

|                                            | Temporal resolution | Height<br>(depth) | Accuracy                    | Period                                |
|--------------------------------------------|---------------------|-------------------|-----------------------------|---------------------------------------|
| SSW                                        | Hourly average      | 3.5 m             | 0.3 m/s                     | Jul. 2012– June. 2013                 |
| SST                                        |                     | -1.5 m            | 0.002°C                     |                                       |
|                                            | Location of TRITON  | buoy              | Height corre<br>3.5 to 10.0 | ection by COARE 3.0 from<br>m         |
| 15°                                        |                     |                   |                             |                                       |
| 10°                                        |                     |                   |                             |                                       |
| 5°                                         | •                   |                   |                             |                                       |
| 0° -                                       |                     |                   |                             |                                       |
| -5°                                        |                     |                   | KUB                         | OTA-LAB.                              |
| -10° – – – – – – – – – – – – – – – – – – – | 40° 145° 150°       | <br>155° 160°     | \$INCE 19                   | OCEAN AND<br>SATELLITE<br>SHIZUOKA JA |

#### **Evaluation of AMSR2 wind speed data by TRITON buoy data**



We can find large mean difference for JAXA/AMSR2 data. Also the RMS difference is considerably large compared with RSS/AMSR2. Since the data number of JAXA/AMSR2 is extremely larger than RSS/AMSR2, we expect the reason of this difference of statistics between them is caused by quality control by JAXA.



### Collocated data, JAXA/AMSR2 and RSS/AMSR2



OCEAN AND

SATELLITE

SHIZUOKA JA

are improved. Therefore, it is concluded JAXA QC should be improved. However, the accuracy of JAXA/AMSR2 is still low compared with RSS/AMSR2.

## JAXA SSW vs RSS SSW



# **Topics**

• Construction of high-temporal resolution wind speed using multi-satellite data



Data

| Soncore     | Droducte | poriode    | Instrumente                             | LECT  |            |
|-------------|----------|------------|-----------------------------------------|-------|------------|
| Jensors     | FIUCUCIS | perious    | insti unents                            | Asc.  | Des.       |
|             | JAXA     | 201272     | Padiamatar                              | 12.20 | 1.20       |
| AIVISAZ VI  | RSS      | 2012.7.3-  | Nacionietei                             | 13.30 | 1.50       |
| WindSat     | RSS      | 2003.2.5-  | Radiometer                              | 18:00 | 6:00       |
|             |          | 2000.2.0   | Radiometer 18:00<br>Scatterometer 21:30 |       |            |
| Ascat-A     | KNMI     | 2012.3.12- | Scatterometer                           | 21:30 | 9:30       |
|             |          |            |                                         |       |            |
| OSCAT       | KNMI     | 2013.3.18- | Scatterometer                           | 24:00 | 12:00      |
|             |          |            |                                         |       |            |
| KUBOTA-LAB. |          |            |                                         |       | <b>B</b> . |

SINCE 198

OCEAN AND

SATELLITE

SHIZUOKA JA

# **Equatorial Crossing Time**



# NDBC, TAO, RAMA, PIRATA buoys





Data

#### $\Delta t < 30 min$

Ånalysis period: 2013/3/18-2013/5/31



# Processing

- 1. Satellite observation data
- 2. Linear interpolation
- 3. Optimum Interpolation



### Time variation JAXA/AMSR2, Buoy :100°E, 25°S



## **Data Coverage**



## Statistics for hourly wind speeds

| Products  |      | Bias  | RMS  | Corr | Num.  |
|-----------|------|-------|------|------|-------|
| AMSR2     | JAXA | 0.76  | 1.97 | 0.78 | 2362  |
|           | RSS  | 0.11  | 1.13 | 0.90 | 1761  |
| ASC       | CAT  | -0.10 | 1.09 | 0.92 | 1311  |
| OSC       | CAT  | 0.02  | 1.18 | 0.90 | 1953  |
| WSA       | T_LF | 0.08  | 0.95 | 0.93 | 1081  |
| Multi     | JAXA | 0.25  | 1.48 | 0.85 | 6720  |
| Multi     | RSS  | 0.02  | 1.11 | 0.91 | 6137  |
| 1D Lincor | JAXA | 0.19  | 1.48 | 0.84 | 28655 |
| ID-Lineai | RSS  | 0.00  | 1.23 | 0.88 | 26276 |
|           | JAXA | 0.37  | 1.70 | 0.80 | 45667 |
| Olivi     | RSS  | 0.21  | 1.63 | 0.82 | 45497 |
| OIM (2)   | JAXA | 0.38  | 1.73 | 0.79 | 47842 |
|           | RSS  | 0.22  | 1.67 | 0.80 | 47866 |

SATELLITE shizuoka ja

EAN AND

ιл

## NDBC/Open ocean buoys

#### NDBC (open ocean)

| Products  |      | Bias  | RMS  | Corr | Num.  |
|-----------|------|-------|------|------|-------|
| AMSR2     | JAXA | 0.30  | 1.22 | 0.86 | 770   |
|           | RSS  | 0.13  | 0.93 | 0.90 | 744   |
| ASC       | CAT  | -0.19 | 0.84 | 0.93 | 544   |
| OSC       | CAT  | -0.06 | 0.92 | 0.91 | 939   |
| WSA       | T_LF | 0.10  | 0.86 | 0.92 | 505   |
| Multi     | JAXA | 0.04  | 1.02 | 0.89 | 2765  |
| Multi     | RSS  | 0.00  | 0.91 | 0.91 | 2749  |
| 1D Lincor | JAXA | 0.03  | 1.13 | 0.87 | 12358 |
| ID-Linear | RSS  | -0.01 | 1.05 | 0.89 | 12260 |
| OIM       | JAXA | 0.06  | 1.16 | 0.86 | 15318 |
| Olivi     | RSS  | 0.02  | 1.12 | 0.87 | 15318 |
|           | JAXA | 0.07  | 1.20 | 0.87 | 16003 |
| OIM (2)   | RSS  | 0.03  | 1.17 | 0.86 | 16003 |

# Topics

• Investigation of accuracy of daily-mean data derived from of high-temporal resolution wind speed data

If we use data observed by one satellite, we have two observations within one day and we have a large sampling error. Therefore, we can expect to reduce the sampling error, if we use the hourly data we constructed.



## Statistics for daily-mean wind speeds

We can extremely reduce the RMS difference if we use our hourly data.

| Products  |      | Bias  | RMS  | Corr | Num. |
|-----------|------|-------|------|------|------|
|           | JAXA | 0.65  | 1.77 | 0.80 | 1648 |
| AMSRZ     | RSS  | -0.05 | 1.17 | 0.88 | 1339 |
| AS        | CAT  | -0.06 | 1.43 | 0.84 | 1048 |
| OS        | CAT  | 0.05  | 1.38 | 0.84 | 1410 |
| WSA       | T_LF | 0.08  | 1.08 | 0.89 | 848  |
| N/I, II+i | JAXA | 0.34  | 1.36 | 0.86 | 1945 |
| Internet  | RSS  | 0.01  | 1.16 | 0.89 | 1768 |
| 1D Lincor | JAXA | 0.33  | 1.32 | 0.86 | 1953 |
| TD-Linear | RSS  | 0.00  | 1.12 | 0.89 | 1812 |
| OIM       | JAXA | 0.37  | 0.99 | 0.90 | 2028 |
| Olivi     | RSS  | 0.21  | 0.95 | 0.91 | 2028 |
| OIM (2)   | JAXA | 0.37  | 0.99 | 0.90 | 2028 |
| OIM (2)   | RSS  | 0.22  | 0.95 | 0.91 | 2028 |

## Statistics for daily-mean wind speeds

NDBC open ocean buoy

| Proc      | lucts | Bias  | RMS  | Corr | Num. |
|-----------|-------|-------|------|------|------|
| AMSR2     | JAXA  | 0.19  | 1.26 | 0.83 | 595  |
|           | RSS   | -0.15 | 0.95 | 0.87 | 568  |
| AS        | CAT   | -0.07 | 1.05 | 0.86 | 391  |
| OS        | CAT   | 0.04  | 0.90 | 0.90 | 595  |
| WSA       | T_LF  | 0.10  | 0.96 | 0.87 | 374  |
| N/I, II+i | JAXA  | 0.05  | 0.75 | 0.92 | 675  |
| wuru      | RSS   | -0.03 | 0.75 | 0.92 | 669  |
| 1D Lincor | JAXA  | 0.04  | 0.76 | 0.92 | 678  |
| TD-Linear | RSS   | -0.02 | 0.70 | 0.93 | 678  |
| OIM       | JAXA  | 0.05  | 0.61 | 0.95 | 679  |
| Olivi     | RSS   | 0.00  | 0.59 | 0.95 | 679  |
| OIM (2)   | JAXA  | 0.06  | 0.62 | 0.94 | 679  |
| OIM (2)   | RSS   | 0.02  | 0.61 | 0.95 | 679  |

## daily wind data vs. hourly wind data

#### RMS values for wind speed data



# Topics

• Impact of high-temporal resolution wind speed on accuracy of latent heat flux

We investigate impact of high-temporal resolution wind speed on accuracy of latent heat flux by estimation of latent heat flux using satellite wind speed data instead of buoy wind speed data. We expect the impact is higher than the case of wind speed data because of the nonlinearity of latent heta flux estimation.



# Statistics for hourly latent heat flux

| Products  |      | Bias  | RMS   | Corr | Num.  |
|-----------|------|-------|-------|------|-------|
| AMSR2     | JAXA | 11.94 | 27.37 | 0.96 | 2362  |
|           | RSS  | 6.68  | 18.36 | 0.98 | 1764  |
| ASC       | CAT  | 2.77  | 17.86 | 0.98 | 1311  |
| OSC       | CAT  | 4.66  | 17.50 | 0.98 | 1953  |
| WSA       | T_LF | 5.18  | 15.85 | 0.98 | 1081  |
| Multi     | JAXA | 6.65  | 21.04 | 0.97 | 6720  |
| Multi     | RSS  | 4.85  | 17.55 | 0.98 | 6140  |
|           | JAXA | 6.65  | 21.04 | 0.97 | 28652 |
| ID-Linear | RSS  | 4.29  | 20.33 | 0.97 | 26280 |
|           | JAXA | 6.52  | 24.15 | 0.96 | 45661 |
| OIM       | RSS  | 5.07  | 23.25 | 0.96 | 45497 |
|           | JAXA | 6.54  | 24.75 | 0.96 | 47836 |
| OIM (2)   | RSS  | 5.05  | 23.95 | 0.96 | 47866 |

# Statistics for daily-mean latent heat flux

| Products  |      | Bias  | RMS   | Corr | Num. |
|-----------|------|-------|-------|------|------|
| AMSR2     | JAXA | 11.94 | 33.62 | 0.94 | 1648 |
|           | RSS  | 5.83  | 27.19 | 0.95 | 1339 |
| ASC       | CAT  | 0.88  | 33.91 | 0.91 | 1048 |
| OSC       | CAT  | 5.30  | 28.23 | 0.94 | 1410 |
| WSA       | T_LF | 6.58  | 27.00 | 0.95 | 848  |
| N /11+:   | JAXA | 7.73  | 24.65 | 0.96 | 1945 |
| Marti     | RSS  | 4.83  | 21.20 | 0.97 | 1768 |
|           | JAXA | 7.37  | 23.85 | 0.96 | 1953 |
| ID-Linear | RSS  | 4.48  | 22.05 | 0.97 | 1812 |
| 0114      | JAXA | 6.50  | 13.80 | 0.99 | 2028 |
| Olivi     | RSS  | 5.11  | 13.23 | 0.99 | 2028 |
| OM(2)     | JAXA | 6.58  | 13.58 | 0.99 | 2028 |
|           | RSS  | 5.07  | 13.18 | 0.99 | 2028 |



SATELLITE shizuoka ja

## Summary

- We compared JAXA/AMSR2 with RSS/AMSR2 wind speed data. The results suggest that not only quality control process but also algorithm should be improved for JAXA data.
- We constructed a hourly wind speed product by using multi-satellite data and evaluated the product.
- We evaluated impact of high temporal wind speed data on latent heat flux. The RMS difference of daily mean latent heat flux is 13 W/m<sup>2</sup>.
- We demonstrated the effectiveness of high temporal resolution data to obtain highly accurate daily mean wind speed and latent heat flux data

## **Spatial distribution**

We linearly interporate satellite data into hourly data. But, linear interpolation is not carried out if the nearest data does not exist within 6 hours. Therefore, there are fairly missing data in this step.

#### Apri 23, 2013 20:00 (UTC)

#### After linear interpolation



Moreover, we interpolate the linearly-interporated data by optimum interpolation method two times. Then, we can construct hourly data with no missing data.

After first OIM

After second OIM

