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Spectra 
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For a continuous function          the spectrum is defined as 

 

 

or as the Fourier transform of its autocovariance 

 

 

 

 

with normalisation 
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This is the only justification for the 
interpretation as variance density 
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Spectra and variance 

Suppose the spectrum is a variance density, then 

 

 

 

with      a high-pass filter  

Fourier transform: 

 

 

 

 

Not a variance in position space, but the integral of the 
autocovariance weighted with a sinc-function. 

When  
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Spectra → variance 
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A Ψ 

k r 

Much detail 
Little detail 

Much detail 
Little detail 

Interpretation of spectrum as variance density qualitatively 
correct 
Two datasets, one with much small-scale detail (e.g., scat), and 
one with little small-scale detail (e.g. ECMWF) 

Much detail → 
A drops off fast → 
Narrow function 

Narrow 
function→ broad 

function 

FT 



Structure functions 
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For a discrete dataset 

the 2nd order structure function is defined as 

 

 

with the averaging <.> over all samples 

In case of scatterometer winds     stands for the wind component 
parallel or perpendicular the sampling direction, which in 
general is along track 

Advantages: 

• tolerant for missing points 

• easy to implement 
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Structure functions and variance 
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It is easily shown that 

 

 

with          the autocorrelation. For large distances: 

 

 

 

 

 

 

Moreover, for neighboring points  
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Not in real life for 
scatterometer winds! 



Spatial variance 
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The variance of a sample 

 

 

 

 

 

 

 

Spatial variance:  

 

Yates (1948):  
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Spatial variance and sampling 
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Spatial variances: 

• have clear interpretation 

• are tolerant for missing points 

• are easily implemented 

but 

• depend on sampling strategy 

 

Sampling strategies: 

• non-overlapping samples without missing points (spectra) 

• overlapping samples, all points accepted (structure functions) 

• maximum fraction of missing points 

• weight dependent on number of missing points in sample  



Sampling strategy example 

Spatial Variances   IOVWST 2014 Brest 

Overlapping 
samples 
 
Maximum fraction 
of missing points 
 
Relative weight 
 
 
m: number of 
missing points, 
n: sample size 

n
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Sampling strategy has small effect 

ASCAT-12.5 
Jan 2009 

Spatial variance against r 



Structure functions as proxy for variance 
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Tropical Pacific 
(see posters G. King) 
 
ASCAT-12.5 
ASCAT-25 
SeaWinds-KNMI 
SeaWinds-NOAA 
 
January 2009 
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• Spectral sampling not seriously biased to 
calm conditions 

• Detrending OK for small scales 
• Spectrum no variance density 

Comparison with spectral variance 
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Spectral sampling: 
non-overlapping and 
detrended samples without 
missing points 

Tropical Pacific: 
non-overlapping samples 
without missing points, but 
not detrended 

Spatial: 
overlapping samples without 
missing points 

Spectral: 
assuming the spectrum as 
variance density with  
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Conclusions 
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• Neither spectra nor 2nd order structure functions represent 
variance as a function of scale well; spatial variance does. 

• 2nd order structure functions good proxy for variance 

• Spectral sampling not seriously biased to calm conditions 

• Sampling strategy has relatively small effect (< 30%)  
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Recommendations 

• Use spatial variances to calculate representativeness errors 
(first results in triple collocation: integration range 200 km 
instead of 800 km) 

 

• If you want variance as a function of scale: calculate variances!  


