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Imprint of ocean mesoscale on extratropical atmosphere	


warm SST associated with high wind speed
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Coupling coefficients

 slope s consistently larger for divergence than for curl
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Sm
all et al. 2008

Impact of SST fronts on lower troposphere

Downstream of a warm SST front:	


1. a  “Vertical Mixing” increase in mixing entrains higher momentum from aloft  (Wallace et 
al. 1989, Hayes et al. 1989, Samelson et al. 2006)	


2. “Pressure Effect” imprint of SST gradient on boundary layer virtual temperature and 
baroclinic pressure gradients (Lindzen and Nigam 1987)	


3. “Spin-down” Ekman transport convergences adjusts inversion height gradients to diminish 
surface Ekman pumping (Feliks et al. 2004)



Model for air-sea interaction at SST fronts

u(0), v(0) Ekman spiral	


Θ(0) constant

Ug

h(0) inversion, ΔΘ, no flux

no ocean current, constant SST

• Reduced gravity model capped by sharp inversion	



• Forced by barotropic tropospheric pressure gradient	



• Background Ekman spiral	



• Linear response to weak SST front	
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Air-sea interaction at weak SST front	


1st order (linear) response

nondimensionalized by Rossby Radius of deformation, boundary layer height, inversion strength etc.

vertical mixing mechanism

δ(1)=T(1) -Θ(1) 

air-sea temperature  
differences modulates vertical 

eddy viscosity

pressure gradient mechanism



Vertical mixing effect
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see K
ilpatrick et al. 2014
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Wind stress divergence and curl

warm

cool

cross-front wind	


∇⋅τ > 0

along-front wind	


∇×τ < 0
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Coupling Coefficients	


in wavenumber space

∇⋅τ(k,l) = αD i k⋅eu(0)  T (1)(k,l)	



u(0)l

k

∇×τ(k,l) = αC i k×eu(0)  T (1)(k,l)
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curldivergence

Wave-number space
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∇×τ(k,l) = 	


αC i k×eu(0)  T (1)(k,l)

∇⋅τ(k,l) = 	


αD i k⋅eu(0)  T (1)(k,l)
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curldivergence
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• Linear model captures observed modulation by SST front of 	



✓ lower/higher wind speed over cold/warm water, wind 
stress curl and wind stress divergence	



✓ wind stress divergence/curl aligned with down/cross-wind 
gradient of SST	



✓ stronger coupling coefficients for wind stress divergence 
than for curl 

• Dynamics governed by Rossby adjustment, gravity wave 
response for strong, geostrophic/spin-down for weak cross-
frontal winds 	



• Distinct coupling coefficients of divergence/curl result from 
gravitational sea breeze/spin-down

Conclusions


