Global Coastal Upwelling/Downwelling Estimates from SeaWinds

Steve Morey

Center for Ocean – Atmospheric Prediction Studies The Florida State University Schematic of coastal upwelling zones (NOAA Ocean Service)

Objectives:

Develop estimates of coastal upwelling/downwelling globally from satellite scatterometer winds.

Use this global product to describe spatio-temporal variability of upwellingfavorable winds at multiple scales.

Large Marine Ecosystems (LMEs)

Variability in coastal upwelling has important implications for:

Nutrient supply to large and small marine ecosystems

Carbon sequestration

Regional climate

Cross-shelf transport of biota

Fate of coastal pollutants

Global maps of daily cross-shelf Ekman transport are computed from the 10-year record of SeaWinds scatterometer observations.

This provides a tool for exploring the spatio-temporal variability of potential upwelling zones over all coastal regions, which is particularly important in regions with sparse *in situ* observations.

JCOMMOPS in situ wind observations – April 2013

Methodology

• QuikSCAT/SeaWinds (25 km L2B product) swath 10m wind vectors (u_w , v_w) are converted to stresses as

$$(\tau_x, \tau_y) = \rho_a C_d \|\mathbf{u}_w\| (u_w, v_w)$$

 C_d is calculating using the Large and Pond (1982) quadratic formulation.

- (S_x , S_y) are bin-averaged over 50 km overlapping bins (centered every 0.1°) for each day
- Transport in the ocean surface Ekman layer is calculated as:

$$(S_x, S_y) = \frac{1}{\rho_0 f} (\tau_y, -\tau_x)$$

The air density ρ_a and the ocean density ρ_0 are derived from ICOADS monthly climatology data.

Methodology

- The Ekman transport vector is projected onto the (positive offshore) bathymetric gradient
 - Bathymetric gradient computed from the ETOP02 global bathymetry data set for all locations (subsampled to 0.1° resolution) from 15km from the coast out to 70 km or the 200m isobath, whichever is furthest.
 - Gradient averaged over 60 km length scales (30 km near the coast).

10-year Annual Mean Cross-Isobath Ekman Transport from SeaWinds

Annual mean offshore Ekman transport (m²/s)

Very flat regions (bathymetric slope < .001) are masked.

Dec-Feb mean offshore Ekman transport (m²/s)

Jan-Mar mean offshore Ekman transport (m²/s)

Feb-Apr mean offshore Ekman transport (m²/s)

Mar-May mean offshore Ekman transport (m²/s)

Apr-Jun mean offshore Ekman transport (m²/s)

Zavala-Hidalgo et al., Ocn Dyn., 2006

Jun-Aug mean offshore Ekman transport (m²/s)

Jul-Sep mean offshore Ekman transport (m²/s)

Aug-Oct mean offshore Ekman transport (m²/s)

Sep-Nov mean offshore Ekman transport (m²/s)

Oct-Dec mean offshore Ekman transport (m²/s)

Nov-Jan mean offshore Ekman transport (m²/s)

Identification of Coastal Zones with Upwelling-Favorable Winds

Western US coast summer upwelling

Temporal Variability

Interannual Variability: Area of upwelling-favorable winds

area

total

Interannual Variability: Area of upwelling-favorable winds

Jun-Aug mean offshore Ekman transport (m²/s)

Conclusions and Next Steps

- Daily estimates of cross-shelf Ekman transport (upwelling/downwelling) have been computed from the ~10-year QuikSCAT/SeaWinds data set
- This product allows inspection of multi-scale spatio-temporal resolution of upwelling/downwelling-favorable winds
- The product has applications to marine ecosystem studies
 - Daily variability
 - Seasonal variability
 - Interannual variability
- Next Steps:
 - A web-based front-end will allow quick generation of map and time series derived products (e.g. upwelling indices).
 - Inclusion of data from multiple sensors
 - Extension to near-real-time