Poleward Shift of Southern Hemisphere Westerlies

Lisan Yu

Woods Hole Oceanographic Institution

Collaborator: Xiangze Jin (WHOI)

WHOI Summer Student Fellow: Samantha Whitmore (Harvard University)

International Ocean Vector Wind Science Team Meeting Kona, Hawaii, <u>6-8 May 2013</u>

OAFlux High-Resolution Ocean Vector Wind Analysis A 12-sensor synthesis, daily, 0.25°, 1987-present

Methodology and Strategy

OAFlux synthesis is in essence a least-square fitting in two dimensions.

(1) The synthesis is based on the Gauss-Markov theorem and a linear-squares estimator is formulated.

$$F = \sum_{k} \alpha_{k} (u_{ana} - u_{o,k})^{2} + \sum_{k} \alpha_{k} (v_{ana} - v_{o,k})^{2} + \sum_{m} \beta_{m} (\sqrt{u_{ana}^{2} + v_{ana}^{2}} - w_{o,m})^{2} + Dyn(vort, div)$$

(2) NWP wind directions used as initial guess if scatteometers are not available.(3) Search the optimal solution through minimization.

Yu, L. and X. Jin, 2013: Global Surface Flux Datasets from the Objectively Analyzed Air-sea Fluxes (OAFlux) Project: Satellite-based High-Resolution Analysis of Ocean Surface Vector Winds (1987 onwards). WHOI Technical Report. WHOI-OAFlux-2013-01, Woods Hole, MA.
 Yu, L., and X. Jin, 2012: Buoy perspective of a high-resolution global ocean vector wind analysis using passive radiometers and active scatterometers (1987 – present). J. Geophys. Res, 117, C11013, doi:10.1029/2012JC008069.

OAFlux High-Resolution Ocean Vector Wind Analysis A 12-sensor synthesis, daily, 0.25°, 1987-present

Vector correlation coefficients

Buoy evaluation 126 Buoy Locations 168,863 collocations daily mean 1988-2011 WSP: Mean Diff -0.13m/s RMS error: 0.71 m/s DIR: Mean DIFF -0.55° RMS error: 17°

Annual-mean time series of Wind Speed with error estimates

Decadal Change: Wind Speed versus Wind Stress Wind Speed (*W*)

Wind Stress (τ)

1988–2012 Trend (ms⁻¹ per decade) τ 60N 30N EQ 30S 60S 60E 120E 180 120W 60W 0 10^2 1.5 -2 -1.5 -1 -0.5 0 0.5 2

$$\tau \sim W^2$$

Poleward shift of Southern Hemisphere Westerlies

(1) Originally detected in reanalyses

(e.g. Thompson and Solomon, 2002)

(2) Confirmed by station radiosonde data

(e.g. Marshall 2003; Hande et al. 2012),

(3) Evidenced in satellite altimetric wind speed and wave height retrievals

(e.g. Young et al. 2010)

This study uses the new 25-year vector wind analysis (1987 onwards):

- (1) to characterize the change in winds at the ocean surface,
- (2) to connect the change of wind with ocean observations,
- (3) to examine potential feedbacks between winds and the ACC (Antarctic Circumpolar Currents)

Leading modes of variability on Interannual and longer timescales

Decadal linear trends (1988-2012)

Mean Stress Magnitude OAFlux MEAN wind stress t Nm⁻² 20S 0.25 40S 0.2 0.15 0.1 60S 0.05 0.25 Nm n 80S 30E 90E 150E 150W 90W 30W

Zonal

Meridional

ENSO signals are filtered out

Linear Trends

Stress Magnitude

zonal

meridional

Shift in the westerly band

Seasonal dependence in the Shift

On seasonal timescales. The westerly band contracts poleward during SPR and SUM

Poleward displacement of the ACC fronts from SSH

The ACC front positions

Sokolov & Rintoul (2009):

Each of the ACC fronts has shifted to the south by about 60km, 1992-2007
Rate of change = 0.55°/16yrs ~ 0.34°/10 yrs

ENSO signals included

N. Lat (τ_x=0)

ENSO signals filtered out

What governs the shift of SH westerlies?

Are the ACCs just a slave of the change of AAO?

Both SST and Heat content show a cooling trend in the Antarctic Ocean

Ekman sucking/Pumping enhanced as a result of shifting westerlies

Effect of Ekman velocity on SST

Ekman convergence/ pumping pushes surface warmer water downward. Ekman divergence/ sucking brings colder subsurface water to the surface.

Tasmania

Antarctic

Do the ACC fronts influence the winds?

25-year Mean Wind Stress Curl (1988-2012)

(positive: counterclockwise)

Average of ~ 9000 daily means

Wind stress curl sees the ocean bathymetry

(Smith and Sandwell, 1994)

(curl negative: clockwise)

Coupling between wind stress, SST, and SSH

24-year average OAFlux Mean Stress Curl (positive: counterclockwise)

24-year average AVHRR SST Magnitude of Mean SST Gradient (∇**SST)**

Mean Ocean Dynamic Topography Maximenko and Niiler (2005)

Magnitude of Mean SSH Gradient (**\nabla SSH**)

Summary and conclusions

(1) Ocean general circulation responds to wind stress.

Rate of increase: Wind Stress: 1.7±0.8% per decade. Wind Speed : 0.8±0.4% per decade

(2) Wind stress curl sees ocean bathymetry

A coupling between wind stress curl, SST, and SSH fronts along the ACC is evident.

 (3) The surface westerly band has shifted poleward Rate of change: - 0.28±0.20° per dec (~ 75 km in past 25 years) (- 0.33±0.28° per dec if ENSO signals included). The degree of shift is comparable to that of the ACC fronts derived from SSH.

(4) Ekman pumping and sucking are enhanced as a result of shifting westerlies, causing SST trends to change signs across the zero wind stress curl.