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SSTs exhibit diurnal variability
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As far as last century,
studies have noted AT
between different depths
In upper few meters over
course of day

AT can be on the order
of 3°C

Presence of diurnal
warming in certain areas
can last throughout the
majority of daylight
hours.




Development of warm
surface layer

° Winds are Modeled SST (red) and SEVIRI SST (blue)
relatively calm 218 | |
(low mechanical ¢ =
turbulence and € s "~ | dsst=aT
mixing) @ 0

* Ample sunlight 195 | , | . :
absorption into ° ° N 2 '8 20 2
the ocean - R

- Diurnal Cycle 4.125°W, 46.375°N

observed using
model and
satellite data

N

0 5 10 15 20
Hour (Z)

chPS Rachel Weihs, Florida State University IOVWST, Kona, Hawaii, 8 May 2013
4 rweihs@coaps.fsu.edu

Diurnal Magnitude
(deg C)




Overview of Research

 Creation of diurnally varying SST dataset using a physical-
empirical hybrid model (2000-2004)

<Characterization of diurnal warming in regions of the @

o Diurnal streaks
o Temporal persistence in Tropics vs. Midlatitudes

 Examine the influence on surface latent and sensible heat
fluxes over seasonal time scales

<__Analyze sensitivities in model with regard to winds_Solar
radiation at the surface, and precipitation

<* Model evaluation using remotely sensed skin temperature >
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dSST Product

POSH - Profiles in Oceanic Surface Heating Model
o Gentemann et al. (2009)
o Collection of improvements of TOGA-COARE bulk flux algorithm v2.5
 Fairall et al. (1996)
Calculates diurnal warming in a 1-D model at each hour on 0.25° x 0.25°
grid
o Function of bulk SST and accumulated heat/momentum at each time step.
« Advectionis ignored
* Iceis excluded
Variety of diurnal warming models
o Physically based model that captures diurnal warming will likely increase
understanding of physical processes of the upper ocean
Produced 5 year long dataset (2000-2004)
o SST and dSST (magnitude)
o sensible and latent heat flux with and without a diurnally varying SST
 using BVW model (Bourassa 2006)
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Input Data

 POSH needs global continuous time series of hourly data

o atmospheric bulk variables, radiation, and SST,
* Uy, Vyp, Pressure, T,5, Qi , SWR, LWR, Precip Rate

* NASA’s MERRA Reanalysis
o Provides hourly data on 1/2° x 2/3° grid for entire globe — regridded to 1/4°
 Bulk SST

o Need SST closer to SST;4 (Donlon et. al 2007) unaffected by diurnal heating for
total effect
o Reynolds Ol daily SST AVHRR-only (Reynolds et al. 2003)
« 1/4°x1/4°
 Uses satellite and in situ measurements for blended product
 Bias adjusted over seven-day period — eliminates diurnal variability

o Setto 19 m - theoretical maximum dSST thickness (Gentemann personal
communication 2011)
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Scaled dSST

c . a
* Diurnal warming —-9.5 (L) a water thermal Wind Speed a
itud dSST ( Z) = e Dt expansion coefficient
magmtu = p density of water <1.5 Z
R; Bulk Richardson 3 3
i 2 R Number
* Diurnal warm i Cp Tac C, Heat Capacity of 45 5
layer thickness: Dy = Water
ag p Q ac g Gravitational 6 7
V Acceleration
>7.5 9

Requires bulk Richardson number = 0.65

Assuming a linear temperature profile From Gentemann et al. 2009
Function of accumulated wind stress and

accumulated heat

Tac(t) = (1 — g A) T4 (t — At) + 749 At Dissipation coefficients make diurnal
warm layer “interact” with mixed layer
Qac(t) = (1 — ,At)Qqc (t — At) + QuotAt  and lose heat from bottom DWL

Salinity dependence is not explicit in
model
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dSST Subdiurnal Spatial
Structure

dSST magq (deg C) 2000 01 01 1:00 Z

* Sun synchronous

 QOccur at almost all
latitudes

» Reflect current
meteorological state
o Cyclones

o Fair weather
features

* Non-linear non-
negligible increase in
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Bimonthly Average dSST

Jan/Feb Mar/Apr

Diurnal Magnitude (C)
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Effect of Potential Biases in
Winds

* \We can estimate the error associated with biases in the wind
speed data

* Roberts et al. [2010]
compared MERRA
with in situ
measurements

o MERRA had positive bias for
entire distribution of winds

« Best guess estimate of
systematic bias in
winds 1s 0.69 m/s Original Wind Speed (m/s)

Wind Adjustment Function

====BCU10m
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Modified Wind Speed (m/s)
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Effect of Potential Biases in
Winds cont.

 Potential biases affect the short-term diurnal warming —
exceed an Ce Cu rveS Exceedance Probability Difference of POSH dSST for wind speed ranges
e 2002/01/08

* Differences are + | 0-05
* Increased likelihood of 0510
dSSTs at all wind speed e
ranges . g —— 2025
 Largest probability increase = —— 253
between winds of 2.0 - 2.5 — 335
m/s £ o 3540
- Lowest wind speed with the £~ — veto
largest bias correction value 8 o '

Isolated events can be as

large as 1°'C 002

« Bimonthly differences are
less than 0.06°C (not % 05 | r 2 25 s
Sh OWﬂ) dSST magnitude (C)

chPS Rachel Weihs, Florida State University IOVWST, Kona, Hawaii, 8 May 2013
4 rweihs@coaps.fsu.edu




Time Series of Diurnal
Cycles

* Using the best sampled data points on a given day, compare
modeled SST to SEVIRI SST at each hour

Sample Locations
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Time Series of Diurnal
Cycles

* Reynolds SST

— ol estimates foundation
L R temperature

reasonably well

* POSH consistently
overestimates peak
but dissipates heat
too quickly for
smaller peak SST

o Tuning of dissipation
coefficients for
different regions of
ocean may prove useful

SST (deg C)

Time of Day (hour in Z) N Point Number

\
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Conclusions

The diurnal cycle of sea surface temperatures is modeled using Gentemann et
al.’s POSH model (2009)— a physical-empirical hybrid model based on TOGA-
COARE flux model

o exponential adjustment to the diurnal warm layer thickness;

o a function of accumulated wind stress and heat adjusted by dissipation coefficients to

interact with mixed layer

Occurs throughout the world’s ocean

o exceptin areas of ice,

o sometimes in thousand kilometer streaks

o Non-linearly affects surface fluxes

Best guest estimate of bias correction (0.69 m/s) influenced dSST on short
timescales but less so on semi-seasonal scales
o Sensitive to bias adjustment at low wind speeds

Using regridded SEVIRI SST swath data, selected points based on their
sampling were selected to use in a comparison under a best case scenario
approach.

The Reynolds SST was representative of a foundation temperature while the
peaks in POSH were consistently overestimated

Rachel Weihs, Florida State University IOVWST, Kona, Hawaii, 8 May 2013
rweihs@coaps.fsu.edu



Future Work

* Couple diurnally varying SSTs to boundary
layer model

e Input from satellite winds, SSTs
* Varying surface fluxes
 Potentially with HYCOM
* Examine effects
 Divergence, wind feedbacks on SST
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Questions?
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Comparison of Modeled
Diurnal Cycle to
Measurements

« Wantan initial assessmentof . Rerun POSH model to match
how well POSH represents data availability

ts’hsceglurnal CyCIe of gIObaI « Sample day in July, in Atlantic Ocean

« Differences are function of
o Foundation offset
o Shiftin onset of warming
o Hourly/peak offset

« Perform a case study

o Using IFREMER’s MSG/SEVIRI
hourly skin SST swath data

* One of the newer
Instruments; has already been
shown to observe diurnal
cycle (Le Borgne et al.,
2012)

o Average
underestimation of
peak dSST by 0.12 K

POSH dSST (dashed) and SEVIRI SST (solid)
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Time Series of Diurnal
Cycles

SEVIRI REGRIDDED SST 20100719 152

Point Number

* Areas where SST gradients

are large are ambiguous
o Advection (or large turbulent

mixing) may inhibit formation of
a classical diurnal warm layer
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a
Diurnal warming dSST -95 (%) @ water ﬂlﬂﬂ“faﬁl oo | [ WmdSpeed |
3 ‘z- — e EXpANs10n coeneien
mag tude ( ) o density of water =15 2
R; Bulk Richardson 2 2
Number
Diurnal warm ZRiCp Tac €, Heat Capacity of . h
layer thickness: DT = Water
'[Ig p Q ac g Gravitational 6 7
Acceleration 275 9

Requires bulk Richardson number = 0.65
Assuming a linear temperature profile
Function of accumulated wind stress and Tace (t) = (1 - E’rﬂt}Tac (t - ﬂt) + TrotAt

accumulated heat | Qac (I} — (]_ — £ Xﬁt}{? ac (t . ﬁ‘-.t) + Qiotlt

AT gl
Dissipation coefficients make diurnal
warm layer “interact” with mixed layer
and lose heat from bottom DWL

Salinity dependence is not explidt in

- model
From Gentemann et al. 2009
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Blmonthly average dSST

Jan/Feb Composite
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Bimonthly average dSST

Mar/Apr Composite
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Bimonthly average dSST

Jul/Aug Composite
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- Latent heat flux
accounts for 2/3 of
the total net
flux*”.

- Heating released
to the atmosphere
of this magnitude
is considered
non-negligible in
terms of
response”.

LHF Diff (W/m?)
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— + Supports theory
— R = P S p— that diurnal
warming can
affect convection
in the tropics.
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Flux Pt Sensitivity to
Wind/SWR ranges

e  Flux value at dSST maximum I\?g{))((i)mum LHF difference dependence on Wind/Max Solar Radiation

o
(=]

Maximum Latent Heat Flux Instantaneous Difference W/m2

o LHF differences expected to
increase at dSST increases 1100

o Atwind speed < 0.8 m/s, LHF
difference change slows as
winds decrease

—
[
o
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« Balance between humidity
and wind.

800

* Humidity change is less
influential to LHF than wind
speed.

Max Solar Radiation W/m2

700

600

* Possible consequence largest
dSSTs may not correspond to 500
largest LHF deficit.




Max ddy>>1 sensitivity to
Wind/Precip Ranges

- Similar sensitivity study as Wind/Solar Radiation

- Precipitation total 0.0 — 30 mm/hr

- SWR peak is set at 500 W/m? and 700 W/m? for cloudy, rainy
conditions

Maximum dsst dependence on Wind/Precipitation Maximum dsst dependence on Wind/Precipitation
Max Radiation 500 W/m*m Max Radiation 700 W/m*m
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