Hurricane Force Extratropical Cyclones

Zorana Jelenak, Paul S Chang, ¹Joseph Sienkiewicz, and Qi Zhu
NOAA/NESDIS/STAR
¹NOAA/NWS/OPC

Zorana.Jelenak@noaa.gov

IOVWST Meeting 6-8 May 2013 Kona, Hawaii
• Validation of Ocean Prediction Center hurricane force extratropical cyclone best track database
 – Create HF extratropical best track cyclone database for both NH and SH using NCEP Reanalysis 2. Compare:
 • Seasonal and monthly tracking trends for both NH and SH
 • Monthly event frequencies
 • The length of the lifecycle and specifically the duration of HF stages

• QuikSCAT, WindSat and ASCAT HF Observational capabilities
 – Differences/Similarities in storm characteristics as a result of different measurement techniques or instrument characteristics

• Aircraft observations of HF ETC’s
 – Validate cyclone surface characteristics such as maximum wind and storm radius

• Use study results to train marine forecaster in using scatterometer data
HF Cyclones Observed During 2000-2009 Winter Seasons

WARNING CATEGORIES
- **Pre-QSCAT**
 1. GALE 34-47 kt
 2. STORM ≥48
- **QSCAT ERA**
 1. GALE 34-47 kt
 2. STORM 48-63 kt
 3. HURCN FORCE ≥ 64 kt

Hurricane Force Warning Initiated Dec 2000
- Detection increased with:
 - Forecaster familiarity
 - Data availability
 - Improved resolution
 - Improved algorithm

Hurricane Force Wind Warning Initiated Dec 00
- 25 km QuikSCAT Available in N-AWIPS Oct 01
- 12.5 km QuikSCAT available May 04
- Improved wind algorithm and rain flag Oct 06

Totals
- **A-289**
- **P-269**
- **558**
• Datasets
 – OPC Hurricane Force Extratropical Cyclones Database 2000-2010
 – ECMWF 6hourly analysis 2000-2009
 – NCEP Reanalysis-2 2000-2012
 – Tracking algorithm first applied on ECMWF 6hr North Atlantic analysis for period of 9 years (2000-2009).
 – During this time period ECMWF model produced only 24 cyclones that reached hurricane force winds (>63kts) based on maximum wind within storm radius tracked with automated scheme.
• ECMWF tracks first matched to OPC tracks.
 – Using minimum surface pressure, deepening rate and maximum surface wind within cyclone search radius we developed probability function that ECMWF cyclone reached HF winds
• ECMWF track maximum winds speed need to be multiplied by ~1.25 to match OPC track wind speed categories

• ECMWF track minimal surface pressure during HF stages 10mbar lower than OPC tracks

• Two databases show overall increasing trend in HF cyclones over the 9 year period
- Number of cyclones between 2000-2004 higher in NCEP-R database
- NCEP-R wind speed is ~1.07 factor lower than OPC track speeds
- Average monthly track from NCEP-R shows 5 years cyclical trend in HF ETC
- NCEP-R wind speed is ~1.07 factor lower than OPC track speeds
- Average monthly track from NCEP-R shows 5 years cyclical trend in HF ETC
NCEP-R monthly distribution of ETC’s that reached HF status follows OPC detected trends in both N Pacific and N Atlantic ocean.

- Peak months are Dec and Jan in N Pacific and Jan in N Atlantic.
- NCEP-R shows more cyclones earlier in season in N Atlantic and later in season in N Pacific.
• In NCEP-R database cyclones HF stages are shorter for both N Pacific and N Atlantic

• OPC database observed N Pacific cyclones to have HF stage up to 24h
Southern Ocean Cyclone Characteristics

• For almost 50% of ETC that reached HF in S Pacific and S Atlantic ocean HF stages lasted only 6h

• Peak activity reached in July in Indian Ocean

• S Pacific ocean Peak activity months are April and May while S Atlantic peak activity spans over 4 months: Apr-Jul
QuikSCAT, WindSat and ASCAT Observations
QuikSCAT, WindSat and ASCAT HF Observations within North Pacific ETCs

- Hurricane Force Wind Frequency
- Storm Force Wind Frequency
- Gale Force Wind Frequency

QuikSCAT WindSat (RSS) ASCAT-(cmod5h)
Highest wind area:
- CLW levels <0.3mm²
- TPW < 15mm²

RSS WindSat and JPL QuikSCAT products show very similar performance within all three wind categories (gale 17-24m/s, storm 24-32.5m/s, hurricane force >32.5m/s) and therefore are complementary for this type of study.
High Winds Research
- validation set for remotely sensed winds
 - ASCAT, OceanSat-2, future instruments
 - NWP forecast models
- Instrumentation
 - GPS dropsondes, Step Freq. Microwave Radiometer
 - UMASS Imaging Wind and Rain Airborne Profiler (IWRAP)
<table>
<thead>
<tr>
<th>Year</th>
<th>Number of Missions (31)</th>
<th>Satellite Under Flights (OSCAT-15, ASCAT-6)</th>
<th>HF Winds Measured</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td>Flt1 01/23/2010
Flt2 01/27/2010
Flt3 02/01/2010
Flt4 02/02/2010
Flt5 02/11/2010
Flt6 02/14/2010
Flt7 02/15/2010
Flt8 02/19/2010</td>
<td>Flt1 ASCAT-A 14:57Z 17 m/s
Flt3 ASCAT-A 00:13Z 28 m/s; OSCAT 01:49Z 28 m/s
Flt4 ASCAT-A 00:44Z 24 m/s
Flt6 OSCAT 16:15Z 10 m/s
Flt7 OSCAT 15:24Z 27 m/s
Flt8 OSCAT 16:17Z 14 m/s</td>
<td>Flt4 02/02/2010 39 m/s
Flt6 02/14/2010 34 m/s
Flt7 02/15/2010 32 m/s</td>
</tr>
<tr>
<td>2011</td>
<td>Flt1 01/13/2011
Flt2 01/17/2011
Flt3 01/23/2011
Flt4 01/24/2011
Flt5 01/25/2011
Flt6 01/30/2011
Flt7 02/01/2011
Flt8 02/07/2011
Flt9 02/10/2011</td>
<td>Flt1 OSCAT 17:12Z 22 m/s
Flt4 OSCAT 16:21Z 23 m/s
Flt8 OSCAT 16:21Z 26 m/s</td>
<td>Flt2 01/17/2011 32 m/s
Flt5 01/25/2011 40 m/s
Flt7 02/01/2011 36 m/s
Flt8 02/07/2011 32 m/s</td>
</tr>
<tr>
<td>2012</td>
<td>Flt1 01/31/2012
Flt2 02/03/2012
Flt3 02/05/2012
Flt4 02/09/2012
Flt5 02/12/2012
Flt6 02/15/2012</td>
<td>Flt1 OSCAT 16:18Z 27 m/s</td>
<td>Flt2 02/03/2012 33 m/s
Flt3 02/05/2012 33.5
Flt4 02/09/2012 32 m/s</td>
</tr>
<tr>
<td>2013</td>
<td>Flt1 01/22/2013
Flt2 01/23/2013
Flt3 01/25/2013
Flt4 02/02/2013
Flt5 02/04/2013
Flt6 02/08/2013
Flt7 02/12/2013
Flt8 02/14/2013</td>
<td>Flt1 OSCAT 17:05Z 18 m/s
Flt2 OSCAT 16:14Z 24 m/s
Flt4 OSCAT 01:52Z 24 m/s
Flt5 ASCAT-A 23:24Z 27 m/s; ASCAT-A 01:14Z 29 m/s; OSCAT 01:50Z 28 m/s
Flt6 OSCAT 14:36Z 27 m/s
Flt7 ASCAT-B 15:15Z 9 m/s; OSCAT 16:17Z 12 m/s
Flt8 OSCAT 16:20Z 23 m/s; AMSR2 17:00Z 17 m/s</td>
<td>Flt2 01/23/2013 36 m/s
Flt6 02/08/2013 33 m/s</td>
</tr>
</tbody>
</table>
NOAA Aircraft Research
Winter Ocean Storms

Feb 1, 2011 – Depart Halifax, NS Canada 1332 UTC
3 hour ferry flight to developing major ocean cyclone
Mission: SAMPLE HIGHEST WINDS
QuikSCAT – N Atlantic

Monthly Distribution - N Atlantic - 2001-2009

- OPC
- NCEP-R

Wind Speed (knots)

- November
- December
- January
- February
- March

Wind Speed Legend:

- 0
- 5
- 10
- 15
- 20
- 25
- 30

- September
- October
- November
- December
- January
- February
- March
- April
- May

Map of wind speed distribution for different months in the North Atlantic.
Waypoints 1, 2, 3, 4

GDAS & ASCAT winds

GFS TUE 11/20/17 1200UTC 24 HRN SEA LEVEL PRESSURE
GFS 11/20/17 1200 UTC 24 (10m WIND; KTS)
Conclusions

• Hurricane force ETCs 2000-2012 database constructed using NCEP-Reanalysis 2
 – Results reveal cyclical trend in HF ETC in both N Pacific and N Atlantic and Southern Oceans
• Performed comparison of QuikSCAT, WindSat and ASCAT HF ETC observations
 – All three data set reveal similar wind field structures, radius and frequency of hurricane, storm and gale force winds
• 31 flights into N Atlantic ETCs conducted from 2010-2013
 – 15 OSCAT and 6 ASCAT underflights
 – Aircraft measurements validated studies wind field distribution and highest wind radius results
• Results of this study used in scatterometer training for marine forecasters
• The ETC HF OPC and NCEP-R database together with NOAA aircraft ETC N Atlantic flight data will be made available to the community via manati web site within next year