Estimating Winds from Synthetic Aperture Radar in Typhoon Conditions

funded by ONR DRI 32 ITOP, Impacts of Typhoons on the Ocean in the Pacific

J. Horstmann¹, C. Wackerman², R. Foster³, M. Caruso⁴, R. Romeiser⁴, and H. Graber⁴

 28.00°

¹Center for Maritime Research and Experimentation, Italy ²General Dynamics Advanced Information Systems, USA ³Applied Physics Laboratory, JHU, USA ⁴CSTARS, University of Miami, USA

Why SAR for Tropical Cyclones

SAR Typhoon Processing System within the ITOP Project of ONR

Applied Physics Laborator

University of Washing

Wave height

Local Gradient Method

$$(B^2B^4_{xy})^3 \supseteq Sobel \supseteq (B^2B^4_{xy}) \supseteq \Phi$$

Optimized Sobel-Filter

Geophysical Model Function

$$\sigma_0^{pol} = a(\theta)u^{\gamma(\theta)}[1+b(\theta)\cos\phi + c(\theta)\cos(2\phi)]$$

Removal of Scalloping

Scalloped

Romeiser et al., TGARS 2012

Descalloped

Scalloped

Descalloped

qscat

SAR-Retrieved Wind Field and Comparison to SFMR data

Estimation of Wind Field Uncertainties and GMF Limitations

definition

Wind speed uncertainty

Noise Correction of Radarsat-2 Cross Pol NRCS

Noise Correction of Radarsat-2 Cross Pol NRCS

Noise Correction of Radarsat-2 Cross Pol NRCS

Dependence of NRCS on Wind Speed (Including Noise Floor)

CMRE

Dependence of NRCS on Wind Speed (Noise Floor removed)

CMRE

Additional Dependencies of Cross-pol NRCS

Modelling of the NRCS Excluding Cross Talk

Modelling of the NRCS Including Cross Talk (-32 dB Isolation)

Radarsat-2 Crosspol (HV) Retrieved Wind Speeds

Radarsat-2 HV image of Typhoon Megi 17. Sep 2010

Comparison of Co-pol and Cross-pol Retrieved Wind Speeds to SFMR data

Comparison of Co-pol and Cross-pol Retrieved Wind Speeds to SFMR data

Comparison of Co-pol and Cross-pol Retrieved Wind Speeds to SFMR data

GMF	Bias [m]	Standard Deviation [m]	Correlation
Co pol GMF	0.4	6.42	0.75
HV GMF	0.11	3.75	0.83
HV GMF wind	-0.69	3.79	0.85
direction dependent			
VH GMF	-1.48	3.22	0.8

Summary & Outlook

r + + + × × ×

SAR wind directions from orientation of linear features (rms of 18°, lack of inflow)

Filters have been developed to flag:

- non wind induced areas
- areas with uncertain wind speeds

C-band cross pol GMF developed (better for high wind speeds)

Investigation of cross pol with respect to wind direction and incidence angle

Merging of co-pol and cros pol retrieved winds

