Analysis of Co-Located Synthetic Aperture Radar and QuikSCAT Neural-Net Surface Wind Vectors Retrieved in Tropical Cyclones

Ralph Foster¹, Jerome Patoux², Bryan Stiles³, Jochen Horstmann⁴, Chris Wackerman⁵, Roland Romeisser⁶, Hans Graber⁶, Mike Caruso⁶ ¹APL, U of WA; ²Atmos Sci., U of WA; ³JPL; ⁴CMRE; ⁵General Dynamics, ⁶CSTARS, U of Miami

Motivation

- We have demonstrated that our Sea-Level Pressure (SLP) retrieval methodology can adapted and applied to SAR Tropical Cyclone (TC) data.
 - SAR: limited data/often high cost
- Long, freely available, extensive scatterometer record
 - QuikSCAT/UHR possible
 - ASCAT/UHR possible
 - RapidSCAT
- New QuikSCAT TC Neural Net (QS_NN) product
 - Can we address the "Pressure-Wind" relationship?
 - Used in Dvorak estimates
 - Synergy between products (different views of same processes)

Basic SAR Winds Processing Steps

- De-beaming: remove "seams" in ScanSAR (Wackerman)
- Remove "Venetian Blind" noise (Romeisser)
- Estimate wind directions
 - Based on "linear features" (PBL rolls/streaks)
 - Wackerman: maximum contrast $\lambda > \sim 2$ km
 - Horstmann: maximum gradient $\lambda \sim 0.5$ km
 - Reconcile & adjust inflow
 - (Foster: iterate w/PBL model)
- Polarization ratio (HH/VV) Thompson, $\alpha = 0.8$
- CMOD5N 1-km pixels (or experimental X-band GMF)

Typical SAR-SLP Results

- Typhoon Malakas 22 Sep, 2010, 20:30
 - Cat 1, weak typhoon
 - Co-Pol image

Evaluating Wind Fields

- Historic W. Pac. storms: compare with QuikSCAT
- ATL storms & ITOP storms: SFMR & QuikSCAT
- Drop sondes
 - mainly to assess Sea-level Pressure
 - Indirect Cal/Val of winds ala scatterometer
 - Proper surface wind is very difficult to estimate from drop sonde
- Time-averaging considerations
 - Best track (Dvorak) varies between centers:
 - 1-min (JTWC)
 - 10-min (JMA)
 - HWIND 1-min
 - CMOD5N ~ 10 min
 - SFMR ~ 1-min ("~0.8*U₁₅₀")
 - Bruce Harper: 1-min ~ 1.2(10-min) for the higher winds
 - Empirically we find factor is 1.1 to 1.2 \rightarrow very difficult to pin down

(red: CMOD5N; blue: SLP-filt)

SFMR good ~> 5 to 10 m/sEight SAR scenes (8428 data points)SAR good to ~ 30 m/sEight SAR scenes (8428 data points)Fair 30 to 35 m/sC-band, mostly RSAT-1Improvement possible (ambiguity selection, GMF and/or PBL model improvement)

- Super-Typhoon Megi was an anomalous storm
 - ~160 kt winds (85 m/s drop sonde on 17 Sep)
 - Record low MSLP (885 mb)
 - Very small RMW (~10 to 15 km)
- Long time between aircraft and SAR (+8 hr)
 - Still deepening

JPL QuikSCAT Neural Net Winds

- Speed only
 - Directions from JPL Ver. 3 processing
- Trained using 2005 season data
 NOAA/HRD HWIND analyses (1-min winds)
- Srad, 8 sigma0s input all the time
- Retrieves ~1-min winds at 12.5 km pixel
 SAR/CMOD5N: ~10 min winds at 1 km pixel
- Close in time match-ups: QS/RSAT-1

QuikSCAT

Rain flags ignored

QuikSCAT

Nearest SAR pixel (red: CMOD5N; blue: SLP-filt; 1-min/10-min Cor

Neural Net Product

Nearest SAR pixel (red: NN; blue: Ku2010)

Nearest SAR pixel (red: NN; blue: Ku2010)

Adapting SLP retrieval to QS_NN

- Collecting swaths and NOAA/HRD overlaps
- Initial results (5 swaths)
 - Quality of SLP fields from QS_NN is much worse than for SAR
 - Possible problems:
 - Further improvements needed for TC PBL model?
 - Bad input wind directions?

Hurricane Bill (2009)

- Example swath: 20 Aug, 09:45
 - P-3 sampled inner core -1 to +3.5 hours
 - 13 drop sondes
 - SFMR
 - Data adjusted to overpass using HRD flight-level (Willoughby) trak file

- Are QS wind directions are affecting results?
- Use HRD/HWIND analysis (with P-3 data included) to replace QS directions
- Effectively FL minus 10 to 20 deg
- <u>No change to</u>
 <u>QS NN speed</u>

Blue: QS directions Black: HRD directions Red: HRD mapped to QS

Background: σ_0

20-Aug-2009 09:45:00

Input QS_NN Speed

Output SLP-filtered speed

Conclusions & What's Next

- First look at QS_NN wind speeds suggests they have good potential for TC research
 - Good stress test of PBL model & SLP methodology
 - Look for ways to improve PBL model
 - Role of coarse (12.5 km) resolution?
- QS Ver 3 wind directions have remaining problems in TC inner cores
- It appears likely that we will be able to pursue Pressure-Wind relationship
- Planned future collaborations with Jun Zhang (HRD) & Pete Black (SAIC) on TC wind fields & PBL processes using OVW
 – RapidSCAT/SAR/QS (NN& UHR)/ASCAT (UHR)
- Can SLP methodology help improve direction retrieval in TC inner cores?
 - TC inner core: SLP retrieval sensitive to direction errors

Extra Slides

Dr. Chris Wackerman – GDAIS: Wind, Wave Estimation

Why Are SAR Wind Direction Estimates Pretty Good?

- SAR resolves PBL rolls at a variety of scales
 Sub-km to multi-km wavelengths
- Rolls are approximately aligned with the mean surface wind
- Rolls are strong perturbation of mean surface wind

 $\lambda \approx 10 \ km$

Megi 17 Oct 2010 16.5 (X-band)

17

16

220x420 km

123.5124124.5125125.5

Katrina 27

- ~10 km $(\nabla \cdot U)'$ approx. associated with enhancement and reduction of inflow
- ~10 km (\(\nabla \times C_D | \mathbf{U} | \mathbf{U})'\) approx. associated with enhancement and reduction of azimuthal wind
- $(U_{rad}, V_{tan})'$ perturbations not aligned with each other
- OLE not aligned with azimuthal wind, so (U_{rad}, V_{tan}) not aligned with OLE perturbation, flow.
 - Some of the stronger azimuthal wind aliased into radial wind

Consistency ASCAT vs. RSAT-2

Malakas SAR: 2010-09-22 20:30; ASCAT: 00:16 (shifted)

