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Goal of DA, given state vector x(t� 1), is to adjust model trajectory by incorporating

observations y(t), such that new estimate of x(t) is “optimal”.

So, xa = xb +Kd where xb is the background state (or prior), xa is the new state (or posterior)

and d = (y �Hxb) are the innovations due to observations.

4DVar is a DA method wherein Kd is expressed as a control vector of increments:

�z = [�x(0), �f(ti), �b(ti), �⌘(ti)]
T
for increments in initial conditions �x(0), forcing �f(ti),

boundary conditions �b(ti) and model error �⌘(ti). The model error increments are very

hard to estimate and are neglected in “strong constraint” 4DVar.

The posterior is “maximized” by minimizing a cost function. Minimization is achieved

iteratively by incrementing the control vector. We will compare increments in the surface

wind stress part of the control vector �f with ensemble winds from a

Bayesian Hierarchical Model (BHM)
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Figure 9: A hypothetical schematic illustrating where the adjusted surface forcing fb(t)+Gf(t) (indicated by the black 
circle) falls on the posterior pdf (red curve) of f(t). The vertical dashed blue lines represent the bounds 
encompassing a certain percentile (e.g. 95%) of the forcing states of the pdf. If fb(t)+Gf(t) falls between the blue 
lines, as in (a), then the adjusted fluxes are probably legitimate, whereas if fb(t)+Gf(t) falls outside the blue lines, as 
in (b), this is an indication of the presence of significant model error. 
 
Proposed Research Task #1: 
(i) A sequence of strong constraint 4D-Var experiments for ROMS CCS will be performed for 
the period 2000-present. (ii) A surface flux BHM will be used to identify periods when model 
error is a significant factor. The basis for the CCS BHM will be the BHM of Milliff et al (2009) 
for the Mediterranean surface winds which will be reconfigured for the ROMS CCS domain and 
expanded to include surface fluxes of heat and momentum. The BHM data stage will use 
QuikSCAT surface vector winds, and COAMPS surface winds and fluxes, while the process 
model stage will utilize the bulk surface flux model subcomponent of ROMS and COAMPS 
standard 10 m atmospheric boundary layer variables. (iii) A second sequence of weak constraint 
4D-Var experiments will then be performed using the surface flux BHM and strong constraint 
flux increments to inform the model error prior Q and so build and test various different 
hypotheses about model error. (iv) A detailed analysis of the spatio-temporal corrections K(t) to 
the model from each weak constraint 4D-Var assimilation cycle will be performed to identify the 
nature of the model errors. 
 
 
2.3.4 Posterior error EOFs 
 
From (4) or (5) it is easy to show that the posterior covariance of the best estimate circulation, 
Ea, is given by � � � �T T � � �aE I KG D I KG KRK , where � � 1T T �

 �K DG GDG R is the 
Kalman gain matrix. The dimension of Ea will be very large, and is computationally prohibitive 
to calculate and store. However, both G and D are readily available in the form of models, and 
eigenvector analysis of Ea is possible using iterative methods. The resulting eigenpairs of Ea, so 
called principal components and empirical orthogonal functions (EOFs), yield valuable 
information about the patterns of largest uncertainty in the best circulation estimate. In practice, 
only an approximation K� of K is available since it is not feasible to iterate 4D-Var to complete 
convergence. In 4D-PSAS and R4D-Var, a Lanczos formulation of the conjugate gradient 
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boundary layer and air-sea interface thermodynamic terms
(i.e., temperature and moisture gradients) to augment the
high-resolution, high-precision SVW data from QuikSCAT.
Therefore, we did not introduce explicit thermodynamic
terms and coefficients in the process model. Nonetheless,
the SVW from QuikSCAT data contain the thermodynamic
effects that lead to the vector wind signal that is measured
by the satellite. In deciding to base the process model
stage on approximations of the RFE, we have not neglected
thermodynamic effects, but rather relied upon the data that
includes the effects of thermodynamic processes. Bayes
Theorem (1) yields posterior distributions that are weighted
combinations of the data and process models. The data enter
(1) via the data stage distribution. Similar arguments pertain
to the implicit treatment of neglected (e.g., non-linear) terms
in the momentum equations as well.

The RFE are given by:

⌦u

⌦t
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� ⇥u

⌦v

⌦t
+ fu = � 1

⇧o

⌦p
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where f is the Coriolis term, ⇧o is the reference atmospheric
density, p is SLP, and ⇥ is the Rayleigh friction term. The
SLP anomaly is decomposed into a summation of m spatial
structure functions ⌥k(x, y), k = 1, . . . ,m, each multiplied
by time-dependent scalar weights ak(t) as in:

p(x, y, t) = µ+
m⇤

k=1

ak(t)⌥k(x, y). (4)

We have computed m = 20 spatial eigenvectors for the ⌥k

in (4), after removing a mean SLP (µ) from a seasonal
time series of ECMWF SLP analyses for the Mediterranean
region. On average, 20 ⌥k were sufficient to project 80% of
the variability in the SLP anomaly fields over the seasonal
time series.

The momentum equations (3) can be rearranged into:
a) an equation in the zonal velocity u that depends only
on u (i.e., and not v) and SLP time-derivative and spatial-
gradient terms; and b) an equation in v not depending on u
and similar SLP spatial-gradient and time-derivative terms.
These are given by:
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In the process model to be developed here, we
eliminate explicit time-derivative terms from (5), yielding
a geostrophic-ageostrophic model similar to the process
model in Royle et al. (1998). The model design choice to
include explicit terms for only geostrophic and ageostrophic
pressure gradients is essentially ad hoc. A more systematic

approach to process model design is a subject of
current research. Nonetheless, the geostrophic-ageostrophic
truncation of the RFE can be written:

u = � f

⇧o(f2 + ⇥2)

⌦p
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These are the expressions, in continuous form, that lead to
the process model component of the BHM-SVW. Bonazzi
(2008) explores a second atmospheric model form wherein
more terms from the RFE are made explicit.

The velocity fields implied by (6) are unravelled into
column vectors of velocity components and discrete forms
for (6) are obtained by centered-space approximations. In
matrix notation we have:

Ut = � f

⇧o(f2 + ⇥2)
DyPt �

⇥

⇧o(f2 + ⇥2)
DxPt;

Vt =
f

⇧o(f2 + ⇥2)
DxPt �

⇥

⇧o(f2 + ⇥2)
DyPt. (7)

Where the discrete estimates for vectorized u at time t is Ut,
the SLP at time t is Pt, and Dx,y are the discrete operators
for the spatial derivatives. The important conceptual leap
to a stochastic form for (7) is given by a relatively subtle
notational change in the equations as:

Ut = a1,1DyPt + a1,2DxPt + �u,t;

Vt = b1,1DxPt + b1,2DyPt + �v,t, (8)

where �u,t and �v,t are random error vectors to be described.
A stochastic form for the SLP decomposition (4) is:

Pt(x, y) = µ+
N⇤

k=1

�k,t ⌥k(x, y). (9)

Here, the coefficients a1,1, a1,2, b1,1, b1,2 and �k,t in (8)
and (9) are assumed to be random and therefore endowed
with probability distributions to be prescribed at the next
level of the hierarchy. In other words, the a1,j , b1,j and �k,t

are some of the parameters contained in ⇤p (i.e., see (1))
for the BHM-SVW. The a1,j , b1,j j = 1, 2 are independent
of time and location in the current formulation of BHM-
SVW. Adding space and time dependence increases the
computational burden of the model beyond what was
desired for this first implementation in an operational ocean
forecast system setting. The �k,t are allowed to vary with
each discrete timestep, but no explicit time dependence
model is imposed because the SLP data are complete and
project onto these coefficients such that the reconstructed
SLP evolution is realistically smooth.

Prior distributions for the random coefficients
a1,j , b1,j and �k,t are:
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a11
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P ). (10)

Copyright c� 2011 Royal Meteorological Society Q. J. R. Meteorol. Soc. 00: 1–20 (2011)
Prepared using qjrms4.cls

Ensemble Mediterranean Winds from a BHM 7

boundary layer and air-sea interface thermodynamic terms
(i.e., temperature and moisture gradients) to augment the
high-resolution, high-precision SVW data from QuikSCAT.
Therefore, we did not introduce explicit thermodynamic
terms and coefficients in the process model. Nonetheless,
the SVW from QuikSCAT data contain the thermodynamic
effects that lead to the vector wind signal that is measured
by the satellite. In deciding to base the process model
stage on approximations of the RFE, we have not neglected
thermodynamic effects, but rather relied upon the data that
includes the effects of thermodynamic processes. Bayes
Theorem (1) yields posterior distributions that are weighted
combinations of the data and process models. The data enter
(1) via the data stage distribution. Similar arguments pertain
to the implicit treatment of neglected (e.g., non-linear) terms
in the momentum equations as well.

The RFE are given by:

⌦u

⌦t
� fv = � 1

⇧o

⌦p

⌦x
� ⇥u

⌦v

⌦t
+ fu = � 1

⇧o

⌦p

⌦y
� ⇥v (3)

where f is the Coriolis term, ⇧o is the reference atmospheric
density, p is SLP, and ⇥ is the Rayleigh friction term. The
SLP anomaly is decomposed into a summation of m spatial
structure functions ⌥k(x, y), k = 1, . . . ,m, each multiplied
by time-dependent scalar weights ak(t) as in:

p(x, y, t) = µ+
m⇤

k=1

ak(t)⌥k(x, y). (4)

We have computed m = 20 spatial eigenvectors for the ⌥k

in (4), after removing a mean SLP (µ) from a seasonal
time series of ECMWF SLP analyses for the Mediterranean
region. On average, 20 ⌥k were sufficient to project 80% of
the variability in the SLP anomaly fields over the seasonal
time series.

The momentum equations (3) can be rearranged into:
a) an equation in the zonal velocity u that depends only
on u (i.e., and not v) and SLP time-derivative and spatial-
gradient terms; and b) an equation in v not depending on u
and similar SLP spatial-gradient and time-derivative terms.
These are given by:

1

f

�
⌦2

⌦t2
+ (f2 + ⇥2)

⇥
u+ 2

⇥

f

⌦u

⌦t
=

� 1

⇧o

⌦p

⌦y
� 1

⇧of

⌦2p

⌦x⌦t
� ⇥

⇧of

⌦p

⌦x
;

(5)
1

f

�
⌦2

⌦t2
+ (f2 + ⇥2)

⇥
v + 2

⇥

f

⌦v

⌦t
=

1

⇧o

⌦p

⌦x
� 1

⇧of

⌦2p

⌦y⌦t
� ⇥

⇧of

⌦p

⌦y
.

In the process model to be developed here, we
eliminate explicit time-derivative terms from (5), yielding
a geostrophic-ageostrophic model similar to the process
model in Royle et al. (1998). The model design choice to
include explicit terms for only geostrophic and ageostrophic
pressure gradients is essentially ad hoc. A more systematic

approach to process model design is a subject of
current research. Nonetheless, the geostrophic-ageostrophic
truncation of the RFE can be written:

u = � f

⇧o(f2 + ⇥2)

⌦p

⌦y
� ⇥

⇧o(f2 + ⇥2)

⌦p

⌦x

v =
f

⇧o(f2 + ⇥2)

⌦p

⌦x
� ⇥

⇧o(f2 + ⇥2)

⌦p

⌦y
(6)

These are the expressions, in continuous form, that lead to
the process model component of the BHM-SVW. Bonazzi
(2008) explores a second atmospheric model form wherein
more terms from the RFE are made explicit.

The velocity fields implied by (6) are unravelled into
column vectors of velocity components and discrete forms
for (6) are obtained by centered-space approximations. In
matrix notation we have:

Ut = � f

⇧o(f2 + ⇥2)
DyPt �

⇥

⇧o(f2 + ⇥2)
DxPt;

Vt =
f

⇧o(f2 + ⇥2)
DxPt �

⇥

⇧o(f2 + ⇥2)
DyPt. (7)

Where the discrete estimates for vectorized u at time t is Ut,
the SLP at time t is Pt, and Dx,y are the discrete operators
for the spatial derivatives. The important conceptual leap
to a stochastic form for (7) is given by a relatively subtle
notational change in the equations as:

Ut = a1,1DyPt + a1,2DxPt + �u,t;

Vt = b1,1DxPt + b1,2DyPt + �v,t, (8)

where �u,t and �v,t are random error vectors to be described.
A stochastic form for the SLP decomposition (4) is:

Pt(x, y) = µ+
N⇤

k=1

�k,t ⌥k(x, y). (9)

Here, the coefficients a1,1, a1,2, b1,1, b1,2 and �k,t in (8)
and (9) are assumed to be random and therefore endowed
with probability distributions to be prescribed at the next
level of the hierarchy. In other words, the a1,j , b1,j and �k,t

are some of the parameters contained in ⇤p (i.e., see (1))
for the BHM-SVW. The a1,j , b1,j j = 1, 2 are independent
of time and location in the current formulation of BHM-
SVW. Adding space and time dependence increases the
computational burden of the model beyond what was
desired for this first implementation in an operational ocean
forecast system setting. The �k,t are allowed to vary with
each discrete timestep, but no explicit time dependence
model is imposed because the SLP data are complete and
project onto these coefficients such that the reconstructed
SLP evolution is realistically smooth.

Prior distributions for the random coefficients
a1,j , b1,j and �k,t are:

a1,1 ⇥ N(� f

⇧o(f2 + ⇥2)
, ⌃2

a11
)

a1,2 ⇥ N(� ⇥

⇧o(f2 + ⇥2)
, ⌃2

a12
)

b1,1 ⇥ N(
f

⇧o(f2 + ⇥2)
, ⌃2

b11)

b1,2 ⇥ N(� ⇥

⇧o(f2 + ⇥2)
, ⌃2

b12)

�k,t ⇥ N(0,⌃2
P ). (10)

Copyright c� 2011 Royal Meteorological Society Q. J. R. Meteorol. Soc. 00: 1–20 (2011)
Prepared using qjrms4.cls

Ensemble Mediterranean Winds from a BHM 7
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(2008) explores a second atmospheric model form wherein
more terms from the RFE are made explicit.

The velocity fields implied by (6) are unravelled into
column vectors of velocity components and discrete forms
for (6) are obtained by centered-space approximations. In
matrix notation we have:

Ut = � f

⇧o(f2 + ⇥2)
DyPt �

⇥

⇧o(f2 + ⇥2)
DxPt;

Vt =
f

⇧o(f2 + ⇥2)
DxPt �

⇥

⇧o(f2 + ⇥2)
DyPt. (7)

Where the discrete estimates for vectorized u at time t is Ut,
the SLP at time t is Pt, and Dx,y are the discrete operators
for the spatial derivatives. The important conceptual leap
to a stochastic form for (7) is given by a relatively subtle
notational change in the equations as:

Ut = a1,1DyPt + a1,2DxPt + �u,t;

Vt = b1,1DxPt + b1,2DyPt + �v,t, (8)

where �u,t and �v,t are random error vectors to be described.
A stochastic form for the SLP decomposition (4) is:

Pt(x, y) = µ+
N⇤

k=1

�k,t ⌥k(x, y). (9)

Here, the coefficients a1,1, a1,2, b1,1, b1,2 and �k,t in (8)
and (9) are assumed to be random and therefore endowed
with probability distributions to be prescribed at the next
level of the hierarchy. In other words, the a1,j , b1,j and �k,t

are some of the parameters contained in ⇤p (i.e., see (1))
for the BHM-SVW. The a1,j , b1,j j = 1, 2 are independent
of time and location in the current formulation of BHM-
SVW. Adding space and time dependence increases the
computational burden of the model beyond what was
desired for this first implementation in an operational ocean
forecast system setting. The �k,t are allowed to vary with
each discrete timestep, but no explicit time dependence
model is imposed because the SLP data are complete and
project onto these coefficients such that the reconstructed
SLP evolution is realistically smooth.

Prior distributions for the random coefficients
a1,j , b1,j and �k,t are:

a1,1 ⇥ N(� f

⇧o(f2 + ⇥2)
, ⌃2

a11
)

a1,2 ⇥ N(� ⇥

⇧o(f2 + ⇥2)
, ⌃2
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)
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f
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, ⌃2

b11)

b1,2 ⇥ N(� ⇥

⇧o(f2 + ⇥2)
, ⌃2

b12)

�k,t ⇥ N(0,⌃2
P ). (10)
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Values used for the parameters of these distributions (e.g.,
⇤2
a11

etc.) are listed in Appendix 2.
The ⇥u,t and ⇥v,t terms represent the process model

uncertainty in (8). They are defined at the next level of
the process model hierarchy in (11) below. More generally,
these terms can be thought of as “model misfit” terms that
measure the representativeness of the process model. In
this sense, ⇥u,t and ⇥v,t include the combined effects of
unknown distributions corresponding to terms excluded in
the truncation of the RFE, as well as unknown impacts
of terms and physical processes that are not part of the
RFE (e.g., thermodynamic processes). Recall from (1) that
the ⇥u,t and ⇥v,t are part of the posterior distribution
(i.e., under the ⇥p hierarchy). If, given the QuikSCAT and
ECMWF data, the RFE are not an appropriate starting place
for the development of BHM-SVW, or the truncation to
a geostrophic-ageostrophic model is too severe, then we
expect the amplitudes of the most likely values in the
posterior distributions for ⇥u,t and ⇥v,t to be greater than
the modes of the posterior distributions of the a1,j , b1,j in
(8) via (10).

The distribution specification for the ⇥u,t is given by
(see Bonazzi, 2008):

⇥u,t =

n��

k=1

W k�
u
k,t + ⇥̃u,t

⇥̃u,t ⇤ N(0,⇤2
uI). (11)

The error model is comprised of two parts: a) a spatially-
structured part consisting of nested wavelet bases W k,
weighted by random coefficients (i.e., �u

k,t); and b) a
Gaussian noise part (i.e., ⇥̃u,t ), where each �u

k,t is
assumed to follow an independent auto-regressive process
(see Appendix 1). An analogous formulation to (11) is
given for ⇥v,t. The wavelet bases are adapted from the
SVW BHM for tropical winds in Wikle et al. (2001). They
are imposed, as a complete set, fit to the finite domain to
account for multi-scale correlated error processes that were
shown to be important, given scatterometer data, by Wikle
et al. (2001). The BHM methodology allows this more
efficient form to replace an explicit model for the full error
covariance structure that would not be tractable in a problem
with a state-space dimension comparable to ours. While
the error model forms (11) are identical for each velocity
component, the errors for Ut and Vt are independent,
as are the parameters ⇤2

u, ⇤2
v , �u

k,t and �v
k,t. Conditional

distributions for the terms �u
k,t, �

v
k,t, k = 1, . . . , n� , and

⇤2
u, ⇤2

v are specified in Appendix 1.

3.4. BHM Computation

Summaries of the variable and parameter posterior
distributions are obtained by Markov Chain Monte Carlo
(MCMC) methods; specifically the Gibbs Sampler (e.g., see
Gilks et al., 1996). The key to the method is to construct
a Markov chain on the state and parameter spaces having
a limiting distribution coinciding with the target posterior
distribution. Then simulated trajectories of this chain, after a
relaxation or burn-in period, are approximately realizations
for the posterior distribution.

For the Gibbs Sampler, the Markov chain is comprised
of a sequence of full conditional distributions (e.g., Gilks et
al., 1996). These full conditional distributions are sampled

for the process variables, Ut, Vt, and Pt, and the unknown
parameters in a sequential fashion. The full conditional
distributions used here are described in Appendix 1.
Results from Markov chain theory imply that the Gibbs
Sampler is guaranteed to equilibrate to an ergodic state
such that continued samples from the Markov Chain are
samples from the posterior distribution (i.e., the left-hand
side of (1)). The Gibbs Sampler for the BHM-SVW
was coded in MATLAB ��. Estimates of the posterior
distribution are obtained from the final 80,000 iterations
of 100,000 iteration runs of the Gibbs Sampler. A running
mean of the posterior distribution was computed after the
20,000 iteration burn-in period to observe convergence
of the Markov Chain. Realizations from the posterior
distributions were saved at arbitrary intervals in the Gibbs
Sampler iterations (i.e., every 8000 iterations). This level of
computational effort is not unusual for a hierarchical model
with as many state variables, parameters, and data stage
inputs as in BHM-SVW.

BHM-SVW was partially validated in a synthetic data
experiment wherein a circularly symmetric idealized low
pressure system was propagated along a line of latitude
through the Mediterranean Sea domain over 10 days.
Synthetic SVWs were computed to be in geostrophic
balance with the idealized SLP (i.e., Rayleigh friction
� = 0). The synthetic winds were sampled with simulated
measurement errors according to a data stage distribution as
in (2). Posterior distributions for the parameters (10) were
examined after 10,000 iterations of the Gibbs Sampler. The
model was validated in that: a) the modes of the Gaussian
distributions for a1,1 and b1,1 in (10) were centered on
±1/f ; i.e., the inverse Coriolis term (which is all that is
left in a1,1 and b1,1 when � = 0); and b) the modes of the
distributions for the coefficients a1,2 and b1,2 were 0, also
as required when � = 0 (see (10)).

4. BHM-SVW Results

BHM-SVW output results are reported in this section.
Implications of the BHM-SVW for the MFS initial
conditions are discussed in the next section and implications
for the MFS forecast performance is the topic of part 2.

Recall that the process model stage consists of the
hierarchy of distributions implied by (8), (9), (10) and
(11). The data stage distributions are based on the SVW
from QuikSCAT and the SVW and SLP from ECMWF
analyses during the analysis period (days 1A� 14A), and
during the forecast step (days 1F � 10F ), they are based
on SVW and SLP forecasts from ECMWF. In the following
we compare the effects of removing the QuikSCAT data
from the data stage inputs with the full data stage case.
Results are described in terms of: a) “posterior mean” fields
and values, i.e., the means of posterior distributions for
dependent variables and parameters; and b) the uncertainty
or “spread” in posterior distributions as quantified by the
standard deviation with respect to the posterior mean for a
randomly selected set of realizations (usually 10) from the
posterior distributions.

Figure 3 is a snapshot from the posterior distribution
of the BHM-SVW output in the western basin of the
Mediterranean Sea at 18:00 UTC on 2 February 2005

��MATLAB is a registered trademark of The MathWorks, Inc.,
3 Apple Hill Drive, Natick, MA 01760 (508)647-7000 (see
www.mathworks.com/trademarks)
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boundary layer and air-sea interface thermodynamic terms
(i.e., temperature and moisture gradients) to augment the
high-resolution, high-precision SVW data from QuikSCAT.
Therefore, we did not introduce explicit thermodynamic
terms and coefficients in the process model. Nonetheless,
the SVW from QuikSCAT data contain the thermodynamic
effects that lead to the vector wind signal that is measured
by the satellite. In deciding to base the process model
stage on approximations of the RFE, we have not neglected
thermodynamic effects, but rather relied upon the data that
includes the effects of thermodynamic processes. Bayes
Theorem (1) yields posterior distributions that are weighted
combinations of the data and process models. The data enter
(1) via the data stage distribution. Similar arguments pertain
to the implicit treatment of neglected (e.g., non-linear) terms
in the momentum equations as well.

The RFE are given by:

⌦u

⌦t
� fv = � 1

⇧o

⌦p

⌦x
� ⇥u

⌦v

⌦t
+ fu = � 1

⇧o

⌦p

⌦y
� ⇥v (3)

where f is the Coriolis term, ⇧o is the reference atmospheric
density, p is SLP, and ⇥ is the Rayleigh friction term. The
SLP anomaly is decomposed into a summation of m spatial
structure functions ⌥k(x, y), k = 1, . . . ,m, each multiplied
by time-dependent scalar weights ak(t) as in:

p(x, y, t) = µ+
m⇤

k=1

ak(t)⌥k(x, y). (4)

We have computed m = 20 spatial eigenvectors for the ⌥k

in (4), after removing a mean SLP (µ) from a seasonal
time series of ECMWF SLP analyses for the Mediterranean
region. On average, 20 ⌥k were sufficient to project 80% of
the variability in the SLP anomaly fields over the seasonal
time series.

The momentum equations (3) can be rearranged into:
a) an equation in the zonal velocity u that depends only
on u (i.e., and not v) and SLP time-derivative and spatial-
gradient terms; and b) an equation in v not depending on u
and similar SLP spatial-gradient and time-derivative terms.
These are given by:

1

f

�
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⌦p
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.

In the process model to be developed here, we
eliminate explicit time-derivative terms from (5), yielding
a geostrophic-ageostrophic model similar to the process
model in Royle et al. (1998). The model design choice to
include explicit terms for only geostrophic and ageostrophic
pressure gradients is essentially ad hoc. A more systematic

approach to process model design is a subject of
current research. Nonetheless, the geostrophic-ageostrophic
truncation of the RFE can be written:

u = � f

⇧o(f2 + ⇥2)

⌦p

⌦y
� ⇥

⇧o(f2 + ⇥2)

⌦p

⌦x

v =
f

⇧o(f2 + ⇥2)

⌦p

⌦x
� ⇥

⇧o(f2 + ⇥2)

⌦p

⌦y
(6)

These are the expressions, in continuous form, that lead to
the process model component of the BHM-SVW. Bonazzi
(2008) explores a second atmospheric model form wherein
more terms from the RFE are made explicit.

The velocity fields implied by (6) are unravelled into
column vectors of velocity components and discrete forms
for (6) are obtained by centered-space approximations. In
matrix notation we have:

Ut = � f

⇧o(f2 + ⇥2)
DyPt �

⇥

⇧o(f2 + ⇥2)
DxPt;

Vt =
f

⇧o(f2 + ⇥2)
DxPt �

⇥

⇧o(f2 + ⇥2)
DyPt. (7)

Where the discrete estimates for vectorized u at time t is Ut,
the SLP at time t is Pt, and Dx,y are the discrete operators
for the spatial derivatives. The important conceptual leap
to a stochastic form for (7) is given by a relatively subtle
notational change in the equations as:

Ut = a1,1DyPt + a1,2DxPt + �u,t;

Vt = b1,1DxPt + b1,2DyPt + �v,t, (8)

where �u,t and �v,t are random error vectors to be described.
A stochastic form for the SLP decomposition (4) is:

Pt(x, y) = µ+
N⇤

k=1

�k,t ⌥k(x, y). (9)

Here, the coefficients a1,1, a1,2, b1,1, b1,2 and �k,t in (8)
and (9) are assumed to be random and therefore endowed
with probability distributions to be prescribed at the next
level of the hierarchy. In other words, the a1,j , b1,j and �k,t

are some of the parameters contained in ⇤p (i.e., see (1))
for the BHM-SVW. The a1,j , b1,j j = 1, 2 are independent
of time and location in the current formulation of BHM-
SVW. Adding space and time dependence increases the
computational burden of the model beyond what was
desired for this first implementation in an operational ocean
forecast system setting. The �k,t are allowed to vary with
each discrete timestep, but no explicit time dependence
model is imposed because the SLP data are complete and
project onto these coefficients such that the reconstructed
SLP evolution is realistically smooth.

Prior distributions for the random coefficients
a1,j , b1,j and �k,t are:

a1,1 ⇥ N(� f

⇧o(f2 + ⇥2)
, ⌃2

a11
)

a1,2 ⇥ N(� ⇥
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, ⌃2
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b11)
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b12)

�k,t ⇥ N(0,⌃2
P ). (10)
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boundary layer and air-sea interface thermodynamic terms
(i.e., temperature and moisture gradients) to augment the
high-resolution, high-precision SVW data from QuikSCAT.
Therefore, we did not introduce explicit thermodynamic
terms and coefficients in the process model. Nonetheless,
the SVW from QuikSCAT data contain the thermodynamic
effects that lead to the vector wind signal that is measured
by the satellite. In deciding to base the process model
stage on approximations of the RFE, we have not neglected
thermodynamic effects, but rather relied upon the data that
includes the effects of thermodynamic processes. Bayes
Theorem (1) yields posterior distributions that are weighted
combinations of the data and process models. The data enter
(1) via the data stage distribution. Similar arguments pertain
to the implicit treatment of neglected (e.g., non-linear) terms
in the momentum equations as well.

The RFE are given by:
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where f is the Coriolis term, ⇧o is the reference atmospheric
density, p is SLP, and ⇥ is the Rayleigh friction term. The
SLP anomaly is decomposed into a summation of m spatial
structure functions ⌥k(x, y), k = 1, . . . ,m, each multiplied
by time-dependent scalar weights ak(t) as in:

p(x, y, t) = µ+
m⇤

k=1

ak(t)⌥k(x, y). (4)

We have computed m = 20 spatial eigenvectors for the ⌥k

in (4), after removing a mean SLP (µ) from a seasonal
time series of ECMWF SLP analyses for the Mediterranean
region. On average, 20 ⌥k were sufficient to project 80% of
the variability in the SLP anomaly fields over the seasonal
time series.

The momentum equations (3) can be rearranged into:
a) an equation in the zonal velocity u that depends only
on u (i.e., and not v) and SLP time-derivative and spatial-
gradient terms; and b) an equation in v not depending on u
and similar SLP spatial-gradient and time-derivative terms.
These are given by:
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In the process model to be developed here, we
eliminate explicit time-derivative terms from (5), yielding
a geostrophic-ageostrophic model similar to the process
model in Royle et al. (1998). The model design choice to
include explicit terms for only geostrophic and ageostrophic
pressure gradients is essentially ad hoc. A more systematic

approach to process model design is a subject of
current research. Nonetheless, the geostrophic-ageostrophic
truncation of the RFE can be written:
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These are the expressions, in continuous form, that lead to
the process model component of the BHM-SVW. Bonazzi
(2008) explores a second atmospheric model form wherein
more terms from the RFE are made explicit.

The velocity fields implied by (6) are unravelled into
column vectors of velocity components and discrete forms
for (6) are obtained by centered-space approximations. In
matrix notation we have:
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Where the discrete estimates for vectorized u at time t is Ut,
the SLP at time t is Pt, and Dx,y are the discrete operators
for the spatial derivatives. The important conceptual leap
to a stochastic form for (7) is given by a relatively subtle
notational change in the equations as:

Ut = a1,1DyPt + a1,2DxPt + �u,t;

Vt = b1,1DxPt + b1,2DyPt + �v,t, (8)

where �u,t and �v,t are random error vectors to be described.
A stochastic form for the SLP decomposition (4) is:

Pt(x, y) = µ+
N⇤

k=1

�k,t ⌥k(x, y). (9)

Here, the coefficients a1,1, a1,2, b1,1, b1,2 and �k,t in (8)
and (9) are assumed to be random and therefore endowed
with probability distributions to be prescribed at the next
level of the hierarchy. In other words, the a1,j , b1,j and �k,t

are some of the parameters contained in ⇤p (i.e., see (1))
for the BHM-SVW. The a1,j , b1,j j = 1, 2 are independent
of time and location in the current formulation of BHM-
SVW. Adding space and time dependence increases the
computational burden of the model beyond what was
desired for this first implementation in an operational ocean
forecast system setting. The �k,t are allowed to vary with
each discrete timestep, but no explicit time dependence
model is imposed because the SLP data are complete and
project onto these coefficients such that the reconstructed
SLP evolution is realistically smooth.

Prior distributions for the random coefficients
a1,j , b1,j and �k,t are:
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boundary layer and air-sea interface thermodynamic terms
(i.e., temperature and moisture gradients) to augment the
high-resolution, high-precision SVW data from QuikSCAT.
Therefore, we did not introduce explicit thermodynamic
terms and coefficients in the process model. Nonetheless,
the SVW from QuikSCAT data contain the thermodynamic
effects that lead to the vector wind signal that is measured
by the satellite. In deciding to base the process model
stage on approximations of the RFE, we have not neglected
thermodynamic effects, but rather relied upon the data that
includes the effects of thermodynamic processes. Bayes
Theorem (1) yields posterior distributions that are weighted
combinations of the data and process models. The data enter
(1) via the data stage distribution. Similar arguments pertain
to the implicit treatment of neglected (e.g., non-linear) terms
in the momentum equations as well.

The RFE are given by:
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where f is the Coriolis term, ⇧o is the reference atmospheric
density, p is SLP, and ⇥ is the Rayleigh friction term. The
SLP anomaly is decomposed into a summation of m spatial
structure functions ⌥k(x, y), k = 1, . . . ,m, each multiplied
by time-dependent scalar weights ak(t) as in:

p(x, y, t) = µ+
m⇤

k=1

ak(t)⌥k(x, y). (4)

We have computed m = 20 spatial eigenvectors for the ⌥k

in (4), after removing a mean SLP (µ) from a seasonal
time series of ECMWF SLP analyses for the Mediterranean
region. On average, 20 ⌥k were sufficient to project 80% of
the variability in the SLP anomaly fields over the seasonal
time series.

The momentum equations (3) can be rearranged into:
a) an equation in the zonal velocity u that depends only
on u (i.e., and not v) and SLP time-derivative and spatial-
gradient terms; and b) an equation in v not depending on u
and similar SLP spatial-gradient and time-derivative terms.
These are given by:
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In the process model to be developed here, we
eliminate explicit time-derivative terms from (5), yielding
a geostrophic-ageostrophic model similar to the process
model in Royle et al. (1998). The model design choice to
include explicit terms for only geostrophic and ageostrophic
pressure gradients is essentially ad hoc. A more systematic

approach to process model design is a subject of
current research. Nonetheless, the geostrophic-ageostrophic
truncation of the RFE can be written:
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v =
f

⇧o(f2 + ⇥2)

⌦p

⌦x
� ⇥

⇧o(f2 + ⇥2)

⌦p

⌦y
(6)

These are the expressions, in continuous form, that lead to
the process model component of the BHM-SVW. Bonazzi
(2008) explores a second atmospheric model form wherein
more terms from the RFE are made explicit.

The velocity fields implied by (6) are unravelled into
column vectors of velocity components and discrete forms
for (6) are obtained by centered-space approximations. In
matrix notation we have:

Ut = � f

⇧o(f2 + ⇥2)
DyPt �

⇥

⇧o(f2 + ⇥2)
DxPt;

Vt =
f

⇧o(f2 + ⇥2)
DxPt �

⇥

⇧o(f2 + ⇥2)
DyPt. (7)

Where the discrete estimates for vectorized u at time t is Ut,
the SLP at time t is Pt, and Dx,y are the discrete operators
for the spatial derivatives. The important conceptual leap
to a stochastic form for (7) is given by a relatively subtle
notational change in the equations as:

Ut = a1,1DyPt + a1,2DxPt + �u,t;

Vt = b1,1DxPt + b1,2DyPt + �v,t, (8)

where �u,t and �v,t are random error vectors to be described.
A stochastic form for the SLP decomposition (4) is:

Pt(x, y) = µ+
N⇤

k=1

�k,t ⌥k(x, y). (9)

Here, the coefficients a1,1, a1,2, b1,1, b1,2 and �k,t in (8)
and (9) are assumed to be random and therefore endowed
with probability distributions to be prescribed at the next
level of the hierarchy. In other words, the a1,j , b1,j and �k,t

are some of the parameters contained in ⇤p (i.e., see (1))
for the BHM-SVW. The a1,j , b1,j j = 1, 2 are independent
of time and location in the current formulation of BHM-
SVW. Adding space and time dependence increases the
computational burden of the model beyond what was
desired for this first implementation in an operational ocean
forecast system setting. The �k,t are allowed to vary with
each discrete timestep, but no explicit time dependence
model is imposed because the SLP data are complete and
project onto these coefficients such that the reconstructed
SLP evolution is realistically smooth.

Prior distributions for the random coefficients
a1,j , b1,j and �k,t are:

a1,1 ⇥ N(� f

⇧o(f2 + ⇥2)
, ⌃2

a11
)

a1,2 ⇥ N(� ⇥

⇧o(f2 + ⇥2)
, ⌃2

a12
)

b1,1 ⇥ N(
f

⇧o(f2 + ⇥2)
, ⌃2

b11)

b1,2 ⇥ N(� ⇥

⇧o(f2 + ⇥2)
, ⌃2

b12)

�k,t ⇥ N(0,⌃2
P ). (10)
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Summary	
  

Work	
  in	
  Progress	
  

q  Ocean	
  forecast	
  model	
  error	
  esJmates	
  are	
  important	
  for	
  assessing	
  forecast	
  accuracies	
  
	
  	
  	
  	
  	
  	
  	
  and	
  improving	
  model	
  and	
  observaJon	
  array	
  designs	
  (strong	
  vs.	
  weak	
  constraint	
  in	
  4dVar).	
  
	
  
q  Model	
  error	
  is	
  hard	
  to	
  idenJfy.	
  
	
  
q  Precisely	
  specified	
  error	
  properJes	
  (uncertainty)	
  in	
  QuikSCAT	
  winds	
  have	
  been	
  used	
  
	
  	
  	
  	
  	
  	
  to	
  help	
  idenJfy	
  regions	
  of	
  probable	
  model	
  error	
  in	
  a	
  state-­‐of-­‐the-­‐art	
  ocean	
  forecast	
  
	
  	
  	
  	
  	
  	
  system.	
  	
  
	
  
q  The	
  probability	
  distribuJons	
  from	
  a	
  surface	
  wind	
  BHM	
  (based	
  on	
  QuikSCAT	
  and	
  COAMPS)	
  
	
  	
  	
  	
  	
  	
  	
  have	
  quanJtaJve	
  value	
  (see	
  also	
  Pinardi	
  et	
  al.,	
  2011).	
  

²  Wind	
  stress	
  distribuJons	
  can	
  be	
  summarized	
  directly	
  from	
  surface	
  wind	
  BHM	
  posterior	
  
	
  
²  Other	
  forcing	
  control	
  variable	
  fluxes	
  require	
  BHMs	
  as	
  well	
  (e.g.	
  heat,	
  fresh	
  water)	
  
	
  
²  Model	
  error	
  dynamics	
  can	
  be	
  modeled	
  given	
  data	
  stages	
  of	
  the	
  kinds	
  suggested	
  here.	
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