Using Surface Pressure to Produce Scene-Wide, km-Scale Tropical Cyclone Surface Wind Retrievals From SAR

Summary
- Surface pressure retrieval methodology successfully transferred to km-scale SAR winds.
- Bulk pressure gradient methodology looks promising for improving SAR high wind retrievals.
- SLP technique allows scene-wide surface wind retrievals that improve upon standard GMF methods.

- **SAR TC Working Group Collaboration**
 - Hans Graber
 - Chris Wackerman
 - Jochen Horstmann
 - Ralph Foster
 - Roland Romeiser
 - Mike Caruso
 - CSTARS/RSMAS, U. Miami

- **Supported by NASA IOVWST and ONR Physical Oceanography:**

 Using Surface Pressure to Produce Scene-Wide, km-Scale Tropical Cyclone Surface Wind Retrievals From SAR

- **Surface pressure retrieval methodology successfully transferred to km-scale SAR winds**
- **Bulk pressure gradient methodology looks promising for improving SAR high wind retrievals.**
- **SLP technique allows scene-wide surface wind retrievals that improve upon standard GMF methods.**

- **Impact of Typhoons on the Pacific (ITOP) Experiment (2010)**
 - 18 SAR images of eyes and near misses
 - 9 C-band and 9 X-band, various polarizations
 - 7 with near-in-time USAF C-130 under flights (sondes and SFMR)

- **Historical Atlantic imagery from Canadian Space Agency Hurricane Watch**

- **Examples**
 - **Malakas (22 Sep, 2010, 20:30 UTC)**
 - C-130 survey
 - Weak Cat-1 typhoon
 - Within range of existing GMFs
 - Excellent comparison between SAR and C-130 observations
 - Some remaining low incidence angle problems

 - **Megi (15 Oct, 2010, 21:00 UTC)**
 - Typhoon on the Pacific (ITOP) Experiment (2010)
 - Super Typhoon, use of high ambiguity winds
 - C-130 flight survey of Typhoon on the Pacific (ITOP) Experiment (2010)
 - SFMR winds (black) and rain rate (cyan) compared to CMOD5N SAR winds (blue) and SLP winds (red).
 - C-130 flight-level estimated surface pressure (black) and rain rate (cyan) compared to CMOD5N SAR winds (blue) and SLP winds (red).

 - Super Typhoon, use of high ambiguity winds
 - C-130 flight survey of Typhoon on the Pacific (ITOP) Experiment (2010)
 - SFMR winds (black) and rain rate (cyan) compared to CMOD5N SAR winds (blue) and SLP winds (red).

- **Supporting Figures and Tables**
 - **Figure 1:** SAR TC surface winds above 30 m s⁻¹ limited by
 - In situ Cal/Val data
 - Geophysical model functions
 - Wind directions from rolls/breaks
 - Selection of directions
 - Eye location
 - Assume barometers are more reliable than anemometers in TCs
 - Sea-level Pressure (SLP) is an inherently integrated property of surface winds
 - Can we use SLP as an alternate source of surface wind Cal/Val data?
 - First step: Use SLP methodology as a scene-wide (vs. pixel-by-pixel) surface wind retrieval

- **Malakas 22:**
 - Cleanest example from ITOP
 - Close-in-time C-130 survey
 - Weak Cat-1 typhoon
 - Within range of existing GMFs
 - Excellent comparison between SAR and C-130 observations
 - Some remaining low incidence angle problems

- **Megi 15:**
 - Stronger storm than Malakas 22
 - Very compact, trial for PBL model (small errors magnify)
 - Limited range of sonde splash pressures

- **Megi 17:**
 - Super Typhoon (record low MSLP, JMA: 885 mb)
 - Severe challenge for SAR
 - Used small (<200) high ambiguity winds in order to reach reasonable MSLP
 - Hint of multiple eye wall (unverified)

- **SAR TC surface winds above 30 m s⁻¹ limited by**
 - In situ Cal/Val data
 - Geophysical model functions
 - Wind directions from rolls/breaks
 - Selection of directions
 - Eye location
 - Assume barometers are more reliable than anemometers in TCs
 - Sea-level Pressure (SLP) is an inherently integrated property of surface winds
 - Can we use SLP as an alternate source of surface wind Cal/Val data?
 - First step: Use SLP methodology as a scene-wide (vs. pixel-by-pixel) surface wind retrieval