Wind stress curl (WSC) fields based on QuikSCAT Level 2B winds are compared between revisions 2 and 3 (i.e. R2 vs. R3) of the NASA Jet Propulsion Laboratory dataset. Sensitivities and accuracies of WSC estimates are compared on an analytic test case (idealized winds). We compare results for discrete stencil (finite difference like) and line integral (as per the circulation theorem) algorithms for surface winds from regular grids (i.e. involving interpolations and/or bin-averaged) and from the reported swath locations (i.e. no interpolation or bin-averaging). Pathologies of irregular spacing in the swath data are problematic for high-resolution WSC calculations. WSC field summaries are computed for basin-scale and global temporal averages using the bin-averaged WSC algorithm at 0.25 deg resolution. WSC summaries include implied Sverdrup transports and Ekman pumping estimates.

Abstract

Wind stress curl differences in QuickSCAT Level 2B data (R2 vs. R3) and Preliminary OceanSAT-2

Jeremiah Brown and Ralph F. Milliff

NorthWest Research Associates, Boulder, CO Visiting Fellow, Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO

Temporal Aggregation: 12-Hour vs. 24-Hour

Computing WSC

Figure 1: Comparison of four different WSC calculations for the analytic storm: percent error for bin-averaged stencil (upper-left), bin-averaged integral (upper-right), interpolated stencil (lower-left), and interpolated integral (lower-right). For all four methods, the wind stresses were computed prior to any interpolation or bin-averaging at 12.5 km resolution. WSC values were then calculated at 0.25 degree resolution.

Abstract

Wind stress curl (WSC) fields based on QuikSCAT Level 2B winds are compared between revisions 2 and 3 (i.e. R2 vs. R3) of the NASA Jet Propulsion Laboratory dataset. Sensitivities and accuracies of WSC estimates are compared on an analytic test case (idealized winds). We compare results for discrete stencil (finite difference like) and line integral (as per the circulation theorem) algorithms for surface winds from regular grids (i.e. involving interpolations and/or bin-averaged) and from the reported swath locations (i.e. no interpolation or bin-averaging). Pathologies of irregular spacing in the swath data are problematic for high-resolution WSC calculations. WSC field summaries are computed for basin-scale and global temporal averages using the bin-averaged WSC algorithm at 0.25 deg resolution. WSC summaries include implied Sverdrup transports and Ekman pumping estimates.

Computing WSC

Figure 1: Comparison of four different WSC calculations for the analytic storm: percent error for bin-averaged stencil (upper-left), bin-averaged integral (upper-right), interpolated stencil (lower-left), and interpolated integral (lower-right). For all four methods, the wind stresses were computed prior to any interpolation or bin-averaging at 12.5 km resolution. WSC values were then calculated at 0.25 degree resolution.

Abstract

Wind stress curl (WSC) fields based on QuikSCAT Level 2B winds are compared between revisions 2 and 3 (i.e. R2 vs. R3) of the NASA Jet Propulsion Laboratory dataset. Sensitivities and accuracies of WSC estimates are compared on an analytic test case (idealized winds). We compare results for discrete stencil (finite difference like) and line integral (as per the circulation theorem) algorithms for surface winds from regular grids (i.e. involving interpolations and/or bin-averaged) and from the reported swath locations (i.e. no interpolation or bin-averaging). Pathologies of irregular spacing in the swath data are problematic for high-resolution WSC calculations. WSC field summaries are computed for basin-scale and global temporal averages using the bin-averaged WSC algorithm at 0.25 deg resolution. WSC summaries include implied Sverdrup transports and Ekman pumping estimates.

Abstract

Wind stress curl (WSC) fields based on QuikSCAT Level 2B winds are compared between revisions 2 and 3 (i.e. R2 vs. R3) of the NASA Jet Propulsion Laboratory dataset. Sensitivities and accuracies of WSC estimates are compared on an analytic test case (idealized winds). We compare results for discrete stencil (finite difference like) and line integral (as per the circulation theorem) algorithms for surface winds from regular grids (i.e. involving interpolations and/or bin-averaged) and from the reported swath locations (i.e. no interpolation or bin-averaging). Pathologies of irregular spacing in the swath data are problematic for high-resolution WSC calculations. WSC field summaries are computed for basin-scale and global temporal averages using the bin-averaged WSC algorithm at 0.25 deg resolution. WSC summaries include implied Sverdrup transports and Ekman pumping estimates.

Abstract

Wind stress curl (WSC) fields based on QuikSCAT Level 2B winds are compared between revisions 2 and 3 (i.e. R2 vs. R3) of the NASA Jet Propulsion Laboratory dataset. Sensitivities and accuracies of WSC estimates are compared on an analytic test case (idealized winds). We compare results for discrete stencil (finite difference like) and line integral (as per the circulation theorem) algorithms for surface winds from regular grids (i.e. involving interpolations and/or bin-averaged) and from the reported swath locations (i.e. no interpolation or bin-averaging). Pathologies of irregular spacing in the swath data are problematic for high-resolution WSC calculations. WSC field summaries are computed for basin-scale and global temporal averages using the bin-averaged WSC algorithm at 0.25 deg resolution. WSC summaries include implied Sverdrup transports and Ekman pumping estimates.

Computing WSC

Figure 1: Comparison of four different WSC calculations for the analytic storm: percent error for bin-averaged stencil (upper-left), bin-averaged integral (upper-right), interpolated stencil (lower-left), and interpolated integral (lower-right). For all four methods, the wind stresses were computed prior to any interpolation or bin-averaging at 12.5 km resolution. WSC values were then calculated at 0.25 degree resolution.