Towards an Optimal Noise Versus Resolution Trade-off in Wind Scatterometry

Brent Williams
Jet Propulsion Lab, California Institute of Technology

IOWVST Meeting Utrecht Netherlands
June 12, 2012

Copyright 2012 California Institute of Technology.
Government sponsorship acknowledged.

The work described in this paper was carried out by the Jet Propulsion Laboratory, California Institute of Technology under a contract with the National Aeronautics and Space Administration.
Overview

- Estimation approach
 - Field-wise estimation with statistical signal model
- Implementation
 - MAP estimation
 - Development of priors
- Analysis (QSCAT)
 - Speed histograms
 - Metrics vs. ECMWF
 - Spectra
 - Examples
Estimation Approach

- Field-wise retrieval with statistical signal model (i.e., prior)
 - Simultaneously estimate every WVC for entire rev
 - Prior incorporates spatial covariance (k^{-2} spectrum)
 - No ambiguity removal post wind-retrieval
 - Effectively done by initialization
Estimation Approach

- **Bayes Estimation**
 - Multimodal \Rightarrow local quadratic loss
 - Impractical to implement unless local ball $\Rightarrow 0$
 - Converges to the MAP estimate

- **MAP Estimation**
 - Practical to implement
 - Incorporates the spatial structure of prior
 - Trades off noise and resolution
 - May be biased

Maximize log of posterior distribution (gradient search)

\[
\frac{\partial}{\partial \bar{U}(x)} \log f(\bar{U}(x)|\bar{\sigma}_m^0) = \frac{\partial}{\partial \bar{U}(x)} \left[\log f(\bar{\sigma}_m^0|\bar{U}(x)) + \log f(\bar{U}(x)) \right]
\]

ML portion Prior
Implementation: MAP Estimation

• ML portion (left side)[1]

\[
\frac{\partial}{\partial U_i(x)} \log f(\sigma^0_m | \vec{U}(x)) = \sum_n -K_n A_n(x) \frac{\partial \text{gmf}_n(\vec{U}(x))}{\partial U_i(x)}
\]

• Prior indep Gaussian with spatial cov matrices[2]

\[
f(\vec{U}(x)) = f(U_s(x)) f(U_d(x))
\]

\[
\frac{\partial \log f(U_s(x))}{\partial U_s(x)} = \frac{-1}{2} \mathbf{R}_s^{-1}(U_s(x) - \mu_s(x))
\]

\[
\frac{\partial \log f(U_d(x))}{\partial U_d(x)} = \sin(U_d(x)) \circ \mathbf{R}_d^{-1} \cos(U_d(x)) - \cos(U_d(x)) \circ \mathbf{R}_d^{-1} \sin(U_d(x))
\]

Implementation: Prior Covariance

- Exponential covariance function
 \[c(x) = e^{-2\pi k_0 |x|} \quad \mathcal{F}\{c(x)\} = \frac{2k_0}{k^2 + k_0^2} \]

- Estimate parameters from L2B12 selected ambiguity using signal and noise model (direction cov of \(\psi = e^{id} \))

\[
\text{cov}(x) = ae^{-b|x|} + c\delta(x)
\]

TABLE I

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Speed</th>
<th>Direction</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a)</td>
<td>12.58</td>
<td>0.924</td>
</tr>
<tr>
<td>(b)</td>
<td>0.01238</td>
<td>0.01029</td>
</tr>
<tr>
<td>(c)</td>
<td>0.678</td>
<td>0.074</td>
</tr>
</tbody>
</table>

Jet Propulsion Lab, CalTech
Analysis: Speed Histograms

- 99 QSCAT Revs: 49663-49762
- MAP speed consistent with L2B12 DIRTH, but low speeds are biased slightly lower
Analysis: Metrics w.r.t. ECMWF

Different bias w.r.t. ECMWF

Reduced variability in center of swath
Analysis: Speed and Direction Spectra

- Average speed resolution ~ 25-33 km
- Average direction resolution ~ 50 km
Examples: Tiled Revs

L2B12 DIRTH Speed (m/s)

MAP Speed (m/s)

Jet Propulsion Lab, CalTech
Conclusion

• MAP estimation with priors that incorporate spatial structure
 – Outperforms DIRTH in all metrics except speed bias w.r.t. ECMWF
 – Automatically filters (attenuates) signal components that are expected to be noisy
 – Only parameters to tune (given a prior) are K_p, WVC posting, and numeric gradient search parameters (i.e., step size, max iterations, and initialization)

• This methodology may be applied to improve several special applications
 – Special priors for hurricanes, fronts, or other storm features
 – Wind and rain estimation with rain priors
 – Coastal and ice-edge applications (can handle sigma0 from mixed surfaces)
Backup Slides
Examples: Tiled Revs

MAP Speed (m/s)
Examples: Tiled Revs

L2B12 Direction (deg.)
Examples: Tiled Revs

MAP Direction (deg.)

Along-track

Cross-track

Jet Propulsion Lab, CalTech
Examples: Tiled Revs

L2B12 Speed (m/s)
Examples: Tiled Revs

MAP Speed (m/s)
Examples: Tiled Revs

MAP Direction (deg.)

Along-track

Cross-track
Examples: Tiled Revs

L2B12 Direction (deg.)
L2B12 DIRTH Direction Histogram

DIRTH Direction Histogram Normalized by ECMWF (dB)
L2B12 DIRTH Speed
12.5km MAP Speed
12.5km MAP Direction
Analysis: Speed and Direction Spectra Normalized by k^{-2}

- Average speed resolution $\sim 25-33$ km
- Average direction resolution ~ 50km
MAP Estimation Implementation

• Maximize log of posterior (gradient search)

\[
\frac{\partial}{\partial \tilde{U}(x)} \log f(\tilde{U}(x)|\tilde{\sigma}_m^0) = \frac{\partial}{\partial \tilde{U}(x)} \left[\log f(\tilde{\sigma}_m^0|\tilde{U}(x)) + \log f(\tilde{U}(x)) \right]
\]

\[
\frac{\partial}{\partial U_i(x)} \log f(\tilde{\sigma}_m^0|\tilde{U}(x)) = \sum_n -K_n A_n(x) \frac{\partial \text{gmf}_n(\tilde{U}(x))}{\partial U_i(x)}
\]

\[
K_n = \left[\frac{(\sigma_n^0 - T_n(\tilde{U}(x))) - (\alpha_n T_n(\tilde{U}(x)) + \beta_n/2)}{R_{n,n}} + \frac{(\sigma_n^0 - T_n(\tilde{U}(x)))^2(\alpha_n T_n(\tilde{U}(x)) + \beta_n/2)}{R_{n,n}^2} \right]
\]

\[
T_n(\tilde{U}(x)) = \sum_x A_n(x) \text{gmf}_n(\tilde{U}(x))
\]