



# The Effects of Gap Wind Induced Vorticity, the ITCZ, and Monsoon Trough on Tropical Cyclogenesis Heather M. Holbach and Mark A. Bourassa

Center for Ocean-Atmospheric Prediction Studies Department of Earth, Ocean & Atmospheric Science The Florida State University Email: hmh06d@my.fsu.edu

Funded by NASA OVWST

# Objectives

- How do gap winds over the Gulf of Tehuantepec and Gulf of Papagayo contribute to tropical cyclogenesis in the Eastern Pacific basin?
- How do the Monsoon Trough and ITCZ interact with the gap winds to influence tropical cyclogenesis in the Eastern Pacific?
- Observational study



#### **Example Case**

2006 Hurricane John



# GridSAT IR (2006 Hurricane John)



IR Brightness Temperature (°C)

#### 2006 Hurricane John

12Z August 24, 2006



12.5 km JPL L2B Version 2 QSCAT

#### 125 km averaging

12Z August 24, 2006



12Z August 25, 2006



06Z August 26, 2006



13Z August 27, 2006



12Z August 28, 2006



#### CCMP Vorticity Hovmöller (2006 Hurricane John)



# Gap Wind Contribution Categories

- <u>Large</u>: Gap winds produce the main source of initial surface cyclonic vorticity
- <u>Medium</u>: Gap winds produce some of the initial surface cyclonic vorticity along with another substantial source not associated with gap winds
- <u>Small</u>: Gap winds contribute vorticity to an existing region after development begins



# Summary of Gap Wind Contributions

2002-2008



- Tehuantepec gap winds contributed vorticity to 29 out of 118 TCs investigated
- Papagayo gap winds contributed vorticity to 58 out of 118 TCs investigated

#### Zonal wind Hovmöller (2006 Hurricane John)



14

# Summary of Monsoon Trough and ITCZ Comparison

2002-2008



- 98 out of 118 (83%) TCs form when the monsoon trough is present.
  - 20 out of 118 (17%) TCs form when weak westerlies or ITCZ is present.
- When monsoon trough is present, Gulf of Papagayo contributes more often than Gulf of Tehuantepec.

# Conclusion

- QSCAT provides observational data needed to complete a study
  - Temporal resolution still presents a problem
  - Rain contamination is an issue
- Gap winds generate surface cyclonic vorticity that contributes to the development of tropical cyclones.
  - Tehuantepec gap winds contributed to ~25% of TCs investigated
  - Papagayo gap winds contributed to ~49% of TCs investigated
- Gap winds are not sufficient for cyclogenesis to occur
- Majority of storms form when the monsoon trough is present.
  - ~76% (44/58) of contributions from Papagayo gap winds occurred while the monsoon trough is present
  - ~69% (20/29) of contributions from Tehuantepec gap winds occurred while the monsoon trough is present

#### Questions?

# **Backup Slides**

#### **Gap Wind Strengths**



## Summer Gap Winds

#### May-November, 2002-2008



#### **Gap Wind Strength**

- Papagayo: 578 (~55%) Gap wind days
  - Majority moderate and strong
- Tehuantepec: 758 (~52%) Gap wind days
  - Majority strong and very strong

#### 2004 Hurricane Celia

11Z July 11, 2004

12Z July 13, 2004





GridSAT: Knapp et al., 2011, BAMS Dvorak Fix Archive: Cossuth, 2010, personal communication

#### **Vorticity Mechanisms**



Shear + Curvature

Monsoon Trough



#### Area-averaged Surface Relative Vorticity

• Adapted from *Bourassa and McBeth-Ford* (2010)

Added spline fit for winds

$$\zeta = \frac{C}{A} \qquad \qquad C = \oint \vec{v} \cdot d\vec{l}$$

ζ: Relative Vorticity

C: Circulation

A: Area

 $\vec{v}$ : velocity along closed contour

 $\vec{l}$ : length tangent to contour







50 km

- Averaging over larger area reduces random error and noise in calculation
- We use a diameter of 125 km

#### **Surface Relative Vorticity**

#### 11Z July 11, 2004

12Z July 13, 2004



Vorticity calculation adapted from Bourassa and McBeth-Ford, 2010, J.A.O.T.

# Gap Wind Contribution Categories

- <u>Large</u>: Gap winds produce the main source of initial surface cyclonic vorticity
- <u>Medium</u>: Gap winds produce some of the initial surface cyclonic vorticity along with another substantial source not associated with gap winds
- <u>Small</u>: Gap winds contribute a small amount of vorticity to initial source or contribute vorticity to an existing region after development begins



#### References

- Bourassa, M. A., and K. McBeth-Ford, 2010: Uncertainty in scatterometer-derived vorticity. J. Atmos. Oceanic Technol., 27(3), 594-603.
- Chelton, D. B., M. H. Freilich, and S. K. Esbensen, 2000: Satellite observations of the wind jets off the pacific coast of central america. part i: case studies and statistical characteristics. *Mon. Wea. Rev.*, 128, 1993–2018.
- Cossuth, J., 2010: Dvorak Fix Archive. Personal communication
- Farfàn L. M. and J. Zehnder, 1997: Orographic influence on the synoptic-scale circulations associated with the genesis of Hurricane Guillermo (1991). *Mon. Wea. Rev.*, 125, 2683-2698.
- Knapp, K. R., and Coauthors, 2011: Globally gridded satellite observations for climate studies. *Bull. Amer. Meteor. Soc.*, 92, 893–907.
- Molinari, J., and D. Vollaro, 2000: Planetary and synoptic scale influences on Eastern Pacific Tropical Cyclogenesis. *Mon. Wea. Rev.*, 128, 3296-3307.
- Molinari, J., D. Vollaro, S. Skubis, and M. Dickinson, 2000: Origins and mechanisms of eastern pacific tropical cyclogenesis: a case study. *Mon. Wea. Rev.*, 128, 125–139.
- Mozer, J. B., and J. A. Zehnder, 1996: Lee vorticity production by large-scale tropical mountain ranges. part i: eastern north pacific tropical cyclogenesis. *J. Atmos. Sci.*, 53, 521–538.
- Zehnder, J. A., 1991: The interaction of planetary-scale tropical easterly waves with topography: a mechanism for the initiation of tropical cyclones. *J. Atmos. Sci.*, 48, 1217–1230.
- Zehnder, J. A. and R. L. Gall, 1991b: Alternative mechanisms of tropical cyclone formation in the eastern North Pacific. *Atmósfera*, *4*, 37–51.
- Zehnder, J. A. and D. M. Powell, 1999: The interaction of easterly waves, orography, and the intertropical convergence zone in the genesis of eastern pacific tropical cyclones. *Mon. Wea. Rev.*, 127, 1566-1585.