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Background

» NASA requested a white paper to examine scientific objectives and mission
options for a potential next-generation science-driven OVW scatterometer.

o Goal: to present a range of science questions that would advance
NASA’s Earth science goals and that go beyond the science questions
driving current scatterometer missions.

o Based on a very limited set of satellite options and a limited budget
» Sources of Input:

e The National Research Council Decadal Review recommendations for
the XOVWM instrument (National Research Council, 2007),

e The ocean vector wind community paper for OceanObs 2009 (Bourassa
etal., 2010), and

o Results of an invited meeting held at the Jet Propulsion Laboratory in
January 2012.

» The goals presented here are from a limited science team, mindful of the
community consensus, and have not yet received endorsement from the
NASA Ocean Vector Winds Science Team (OVWST).



Intent of the White Paper

» The draft of this white paper is to serve as a spring-board for
larger community input.

» The hope is that the final white paper will be a useful
document for outlining science-driven options for the next
generation scatterometer.

o The current draft is limited in coverage of the science
Issues that might be impacted by such a system

o The community at large, and particularly the International
Ocean Vector Winds Science Team, is encouraged to
contribute towards making this a better document.



Broad Themes of The Original Paper

» Decadal and Longer Climate Variability

» Diurnal and Sub-Diurnal Winds and Constellation Cross-Calibration
» High Resolution Winds

» Driving Science Questions

The Ocean Vector Wind Climate Data Record

Sub-Daily Wind Variability

The Impacts of Scatterometry on Numerical Weather Prediction Models
Scatterometer Constellation Cross-Calibration

Coastal Winds

Influence of Mesoscale SST Fronts on Surface Winds

Mesoscale Eddy Influence on the Surface Stress and Oceanic Chlorophyli
Ocean Productivity, Sea Surface Temperature, and Ocean Vector Winds
Latent and Sensible Heat Fluxes

Atmospheric convective system

High Resolution and Rain Flagging

Rain Estimation Using Ku and Ka Scatterometry and AMSR

Tropical Cyclones
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Large Columbia River plume
advected southward produced
some of the lowest salinity and
dissolved oxygen values
measured off the Oregon coast
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High-resolution wind field near
the coast would be valuable from
a fisheries perspective to

- estimate future path of plume as
surface currents respond fairly
quickly (O~1 day) to along-shore
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Gap Flow Winds from Central America
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Gap Flow Winds from Central America
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Gap Flow Winds from Central America
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Curl of Gap Flow Winds from Central America
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Curl of Gap Flow Winds from Central America
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Curl of Gap Flow Winds from Central America
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Comments

The air/sea interaction in coastal regions has a great deal of societal interest
® Fisheries
® Extreme weather
® Forecasts of for coastal winds, waves and sea surface temperature
High resolution winds are needed for near coastal applications
® They are also likely to be important in areas of
® Strong SST gradients
® Atmospheric fronts
® For examining river outflow
® QOrographic forcing of winds
For derivatives on spatial scales less than three grid cells, the noise has a relatively huge
impact
A finer resolution is very useful for producing less noisy area averaged vorticity
® |f the curl of the stress on a 25km scales is important to ocean forcing, then winds
(stress) should be resolved on a 8.3 km scale or finer.
® For coastal work, we would like vorticity on finer scales, and hence need finer scale
winds.




Cape Wind Curl and Local Upwelling
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Summertime upwelling around Cabo Frio, Brazil, in response to wind separation from the coast over

a width ~ 200 km (Castelao and Barth, GRL, 2006). Wind curl [~ 3 x 1077 N/m?] is from
QuikSCAT, and SST [~ 4 (] is from GOES 10-12.
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Warm Core Seclusion A|r/Sea
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Example LHF Retrieval: Warm Core Seclusion

® Black line is the track from Ryan Maue’s e Lack of retrieval in areas with too
data set much rain and between swaths
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In situ aircraft measurements over the north wall of the Gulf Stream
(flow here from left to right)
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Mesoscale Convective Systems (MCSs)
exist on a wide range of space and time scales
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Figure 3.27: Timescales and space scales of MCSs in TOGA COARE. MC5Ss were
defined by a cloud top temperature threshold of 208 K and by whether they ex-
hibited continuity in both space and time. Frequency distribution shows occur-
rences of tracked MCSs (number per 25-km-size interval per hour) as a function
of the maximum size (abscissa) reached by a convective system during its lifetime

(from start to end of its life cycle). From

Houze| (2004).




MCS: Building blocks of tropical convective organization
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Wind speed and stress reduction in the cold wake of
Hurricane Isabel (Sept 2003)

ISABEL 9/08/2003 to 9/18/2003

Satellite wind and SST
interpolated onto an along
and cross track coordinate
P s system (track based on
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El'Nino-Related Changes in Pacific Ocean

» During EI Nino events the
warm surface waters and
cloud cover move from the
eastern Pacific Ocean to the
Into the central Pacific
Ocean.

» The position of the upper
level jets (thick blue arrows
also changes.

e Changing the storm track.

e Changing precipitation
rates.

o Changing temperatures.

Non-El Nino

El Nino



Interannual Biophysical Interaction: ENSO
Gierach, Lee, Turk, and McPhaden (GRL, in prep.)

JPL

Sl Propulsion Labamion
Lanmie neiiils of Techrokoge

Eastern Pacific El Nifio: January 1998

Central Pacific El Mifio: Januar}r 2010
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{upper) 55T anomaly from Reynolds %-degree OISST, and (lower) Sea\WiF5 chl-a anomaly for the 1997-98 EP-El Mifo and 2009-10 CP-El Nino. All images are overlaid with
wind vector anomalies from CCMP. Note the high (low) 55T and reduced (less reduced/positive patches) chil-a in association with the EP-El Nino (CP-El Nino).
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overplotted on both (McPhaden et al., 2011).
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ENSO significantly influences weather patterns and ocean circulations, which in turn affect the physical and biological states of the tropical
and extratropical Pacific via remote and local forcings (i.e., Rossby wawves, Kelvin waves, alterations of the local wind field, alongshore

currents, and large-scale ocean gyre circulation).

Biophysical responses differ with respect to ENSO diversity given variability in local and remote atmospheric and oceanic forcing, and the

resultant horizontal and vertical processes.
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How Important is
This Finer Structure To
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Propagation, etc

Convection input from
Duane Waliser



Research using ADEOS Ocean Color, SST,and _JISL

Jet Propulsion Laboratory

O Cean Wi n d S California Institute of Technology
NSCAT Wind Stress OCTS SST OCTS Ocean Color
Panama Panama

[image from Rodriguez-Rubio and Stuardo, 2002]

OCTS SST OCTS Ocean Color

[image from Murakami et al., 2000]



The MJO and Ocean Chlorophyll:

Could MJO Predictions Be of Use to the Fishing Industry?
Waliser (JPL), Murtugudde (UM), Strutton (OSU), Li (JPL), GRL, 2005

MJO Rainfall Variations: NH Summer Associated Fractional Change in Chl
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*The MJO has systematic and significant influence on Chl concentrations over a widespread regions of the Tropical Oceans.

ePreliminary analysis indicate that wind-induced vertical mixing of nutrients may be in part responsible for the Chl changes.

e This result, along with the indication that the MJO is predictable with lead times of 2-3 weeks, imply that large-scale changes in Chl might
also be predictable at these lead times which is likely to be a valuable asset to the ocean fishing industry.
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» Maps are separated by 10
days.

* Rainfall anomalies
propagate in a northeast
fashion and mainly affect
the Tropical eastern
hemisphere.

 These anomalies are
accompanied by
anomalies in wind, solar
radiation, sea surface
temperature, etc.

» Rain and water vapor are
important players in
radiative fluxes



Apalachicola Bay

Satellite imagery suggests high
chlorophyll concentrations found
over known spawning habitats of
gag grouper during the late
winter/early spring spawning
months may be linked with the
Apalachicola River.

- Indicated by red boxes

This tongue of greater chlorophyl
concentrations is due to river
outflow and the passage of
atmospheric fronts and other
strong weather systems.

- it is not due to mean winds

Graphic courtesy of
Steve Morey



@’ Synoptic Biophysical Interaction: Hurricanes JPL
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Strong wind-driven mixing and wind-induced upwelling are the mechanisms that control biophysical responses in the vertical water column,
such as sea surface cooling and chla enhancement. Hurricane-force winds deepen the mixed layer allowing cold, nutrient-rich subsurface
water access to the upper water column.



Pullen et al. (GRL, 2008)
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@ Seasonal Biophysical Interaction: Monsoon

JPL
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Intensified wind jets and wakes in the lee of Mindoro and Luzon Islands during the NE Monsoon induce the generation and migration of
counter-rotating cceanic eddy pairs and influence the biophysical state of the South China Sea. Ulimately the wind-driven eddies serve as

conveyors of momentum, heat, mass, and biochemical properties.



@4 Decadal Biophysical Interaction: Pacific Decadal Oscillation

(PDO) and North Pacific Gyre Oscillation (NPGO)

DiLorenzo et al. (GRL, 2008)
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Upweling index off the coast of southern California
w70 10 wen  pooo indicate that fluctuations in phytoplankton
yoar biomass are primarily affected by wind-

driven vertical advection.

MPGO Index

Artmospheric fordng patterns of the POO and NPGD modulate decadal
changes in coastal upwelling.

A positivefcold NPGO increases transport in the Alaskan Coastal Current and California Current and the
associated changes in wind forcing create (downwelling-) upwelling-favorable conditions in the (Alaskan Coastal
Current) California Current and (Subtropical Gyre) Alaskan.

The strong cormrelation between upwelling variability off the northeast Pacific coast and the NPGO is only
applicable south of 38°N, whereas north of 38°N vertical advection is correlated with the PDOD. Therefore, the

MPG0 can be considered a primary indicator of upwelling strength, nutrient fluxes, and ecosystem changes
south of 38°N, and the PDO as an indicator north of 38*N.
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Probablllty Den3|ty of Vort|C|ty (Atlantlc 40 GON)
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