Decadal time series of ocean surface vector wind fields

Accuracy, Consistency, and New Insights of
the OAFlux Ocean Vector Wind Analysis (1987 — present)

Lisan Yu

Woods Hole Oceanographic Institution

with programming support from Dr. Xiangze Jin

International Ocean Vector Winds Science Team meeting
Utrecht, Netherlands, June 12-14, 2012



m/s)

WSP (

7.9r

7.81

761
7.5t
7.4t

7.31

7.7¢

OAFlux (Objectively Analyzed air-sea Fluxes)

Daily, 0.25° Ocean Vector Wind Analysis (1987-present)
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Main issues:
How is the OAFlux vector wind analysis constructed?

Is the time series consistent across the various periods?
What accuracy can be achieved by the OAFlux synthesis?
What new insights does the OAFlux time series provide?
How have global surface wind fields been changing?
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Construction of the OAFlux Ocean Vector Wind Analysis

Methodology and Strategy

=  Formulate a linear-squares estimator based on the Guass-Markov theorem
F = Eak(”ma - ”ok )2 + Ea (vana - vok )2 + Elﬁm( \u'”jm; + vjmz - .”'.om )2 + DJ‘”(VO?T.C?IIV)
k ’ k ’ m ’

= Search the optimal solution through a variational minimization approach.

Role of ERAinterim:
= serve as initial guess for wind direction before QuikSCAT was available

= fill in gaps due to the lack of observations or to the removal of rain flagged data.

Daily resolution is chosen to ensure
® maximum satellite coverage on daily basis
= stability of the time series for climate analysis.
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@ Accuracy and consistency of the OAFlux winds:
A buoy perspective Yuandlin(2012)
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Buoy winds are NOT used in the OAFlux synthesis
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Vector Correlation

Consistency Buoy vs OAFlux winds at all locations
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Accuracy estimate based on OAFlux/buoy comparison
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Buoy instrument accuracy:
W: £ 0.3 (ms?); Dir:+5-7.8 (degree)

1988-1998: N= 10,880
2000-2010: N=152,239

Variable 1988-2010: N=168,866
Mean DIFF RMS Error Corr Coef (0-1)

-0.19 0.93 0.93
W (ms?) -0.13 0.66 0.95
-0.13 0.71 0.94
1.48 21.52 0.96
DIR (degree) -0.90 16.98 0.95
-0.55 17.34 0.95
0.07 1.40 0.96
U (ms?) -0.01 1.03 0.96
0.00 1.09 0.96
-0.15 1.30 0.96
V (ms?) 0.05 0.98 0.96
0.02 1.01 0.96
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.Deplctlon of Synoptic Variability: OAFlux vs other products*

Hurricane Bonnie

25-August-1998 Surface Convergence: ou/ox + ov/oy
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= OAFlux before 1999 is constructed from SSMI wind speed with wind direction from ERAinterim as initial guess

= CCMP and OAFlux have similar cost function and similar minimization approach , but temporal resolution differs
(6h vs daily) and the input sensors differ (CCMP has NSCAT, TMI, SeaWind2 but no ASCAT and SSMS16/17)
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Couplets of convergence/divergence

Daily wind convergence field: a global view
25-August-1998

(no scatterometer)
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VN 22 August 2009 Wind derivatives
' (QSCAT and ASCAT are included)

CO nve rgence

QSCAT and ASCAT are noisy.
Applied 1-2-1 smoothing three times.

Convergence/divergence
couplets become visible. ——
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Comments:
OAFlux is able to extract the vorticity
filamentary structures from multiple SR \Vagg;ﬁr
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satellites, indicating that the signals
are buried in noise.

=>» The number of samples could be
important for obtaining the desired
fine-scale processes, even if the
sensor is capable of measuring.
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Summary and conclusions

In this presentation:

= A daily, 0.25° analysis of global ocean vector wind fields starting from 1987 is developed
by OAFlux from synthesizing 12 passive and active sensors.

= The buoy evaluation obtains that OAFlux wind speed has an rms (mean) difference of
0.71 (-0.13) m/s and the wind direction has an rms (mean) difference of 17 (-0.55)
degrees.

= OAFlux shows an improved depiction of the spatial structures associated with synoptic
variability, offering a striking view of the convergence-divergence couplets over the open
oceans.

= OAFlux winds have distinct decadal changes. Wind speed increased in the 1990s but
remained flat in the 2000s.

In planning:
= Dissemination of OAFlux vector wind analysis is planned.
= Data sets being prepared include:
(i) wind, (ii) wind stress, (iii) stress curl, (iv) wind convergence, and (v) vorticity

Future:
= The OAFlux synthesis framework is versatile and can include latest sensors such as OSCAT.



	Decadal time series of ocean surface vector wind fields 
	OAFlux (Objectively Analyzed air-sea Fluxes)�
	Construction of the OAFlux Ocean Vector Wind Analysis
	 Accuracy and consistency of the OAFlux winds: �A buoy perspective
	Consistency
	Consistency
	Accuracy estimate based on OAFlux/buoy comparison
	How much can a synthesis improve the accuracy of input satellite retrievals?
	Depiction of Synoptic Variability: OAFlux vs other products
	Daily wind convergence field: a global view
	Wind derivatives
	Decadal change in global ocean winds
	Surface signature of the poleward expansion of the Hadley circulation
	Summary and conclusions

