

Decadal time series of ocean surface vector wind fields

Accuracy, Consistency, and New Insights of the OAFlux Ocean Vector Wind Analysis (1987 – present)

Lisan Yu

Woods Hole Oceanographic Institution

with programming support from Dr. Xiangze Jin

International Ocean Vector Winds Science Team meeting Utrecht, Netherlands, June 12-14, 2012

OAFlux (Objectively Analyzed air-sea Fluxes) Daily, 0.25° Ocean Vector Wind Analysis (1987-present)

Main issues:

- 1. How is the OAFlux vector wind analysis constructed?
- 2. Is the time series consistent across the various periods?
- 3. What accuracy can be achieved by the OAFlux synthesis?
- 4. What new insights does the OAFlux time series provide?
- 5. How have global surface wind fields been changing?

Construction of the OAFlux Ocean Vector Wind Analysis

Methodology and Strategy

Formulate a linear-squares estimator based on the Guass-Markov theorem

$$F = \sum_{k} \alpha_{k} (u_{ana} - u_{o,k})^{2} + \sum_{k} \alpha_{k} (v_{ana} - v_{o,k})^{2} + \sum_{m} \beta_{m} (\sqrt{u_{ana}^{2} + v_{ana}^{2}} - w_{o,m})^{2} + Dyn(vort, div)$$

Search the optimal solution through a variational minimization approach.

Role of ERAinterim:

- serve as initial guess for wind direction before QuikSCAT was available
- fill in gaps due to the lack of observations or to the removal of rain flagged data.

Daily resolution is chosen to ensure

- maximum satellite coverage on daily basis
- stability of the time series for climate analysis.

Percentage of daily coverage

Accuracy and consistency of the OAFlux winds: A buoy perspective Yu and Jin (2012)

126 buoy locations

A total of 168,836 daily values between 1988 and 2010

 The buoy winds are converted to equivalent neutral wind speed at a height of 10 m using the method by Liu and Tang (1996)

Buoy winds are NOT used in the OAFlux synthesis

Consistency

TAO Pacific (140W, EQ)

Buoy instrument accuracy:

W: ± 0.3 (ms⁻¹); Dir: ± 5 - 7.8 (degree)

Variable	1988-1998: N= 10,880 2000-2010: N=152,239 1988-2010: N=168,866			
	Mean DIFF	RMS Error	Corr Coef (0-1)	
₩ (ms ⁻¹)	-0.19	0.93	0.93	
	-0.13	0.66	0.95	
	-0.13	0.71	0.94	
DIR (degree)	1.48	21.52	0.96	
	-0.90	16.98	0.95	
	-0.55	17.34	0.95	
U (ms ⁻¹)	0.07	1.40	0.96	
	-0.01	1.03	0.96	
	0.00	1.09	0.96	
V (ms ⁻¹)	-0.15	1.30	0.96	
	0.05	0.98	0.96	
	0.02	1.01	0.96	

How much can a synthesis improve the accuracy of input satellite retrievals?

Theoretically, the error reduction is $\sim 1/sqrt(N)$ when using N input sensors.

In reality, the covariances between N sensors are not zeros, because sensors are biased and errors are correlated.

For instance, the errors between QuikSCAT and SSMI 16 is 0.35.

7660 collocations (2008-2009)

	w			
	DIFF (ms ⁻¹)	RMS (ms ⁻¹)	cc (0-1)	
OAFlux	-0.25	0.60 <	0.96	The theoretic
QuikSCAT	-0.22	0.92	0.90	
ASCAT	-0.45	0.94	0.92	number is ~0.
WindSat	-0.16	0.95	0.89	
SSMI F13	-0.19	1.20	0.85	
SSMIS F16	-0.21	0.93	0.91	
SSMIS F17	-0.24	0.94	0.91	
Instrument Accuracy	± 0.3 ms ⁻¹			

al

.36

Depiction of Synoptic Variability: OAFlux vs other products

• OAFlux before 1999 is constructed from SSMI wind speed with wind direction from ERAinterim as initial guess.

 CCMP and OAFlux have similar cost function and similar minimization approach , but temporal resolution differs (6h vs daily) and the input sensors differ (CCMP has NSCAT, TMI, SeaWind2 but no ASCAT and SSMS16/17).

Socennogedon, Charlen Ling

Daily wind convergence field: a global view

60N

30N

EQ

30S

Couplets of convergence/divergence

25-August-1998 (no scatterometer)

CCMP CCMP CCMP CCMP CCMP CCMP

60S 60E 120E 180 120W 60W m/s/100km -1 0 2 -3 -2 з 4 5 1

MERRA

ERAinterim

QSCAT and ASCAT are noisy. Applied 1-2-1 smoothing three times. Convergence/divergence couplets become visible.

Comments:

OAFlux is able to extract the filamentary structures from multiple satellites, indicating that the signals are buried in noise.

➔ The number of samples could be important for obtaining the desired fine-scale processes, even if the sensor is capable of measuring.

Wind derivatives

COAFlux 60N 00AFlux 00AFlux

Decadal change in global ocean winds

Summary and conclusions

In this presentation:

- A daily, 0.25° analysis of global ocean vector wind fields starting from 1987 is developed by OAFlux from synthesizing 12 passive and active sensors.
- The buoy evaluation obtains that OAFlux wind speed has an rms (mean) difference of 0.71 (-0.13) m/s and the wind direction has an rms (mean) difference of 17 (-0.55) degrees.
- OAFlux shows an improved depiction of the spatial structures associated with synoptic variability, offering a striking view of the convergence-divergence couplets over the open oceans.
- OAFlux winds have distinct decadal changes. Wind speed increased in the 1990s but remained flat in the 2000s.

In planning:

- Dissemination of OAFlux vector wind analysis is planned.
- Data sets being prepared include:
 - (i) wind, (ii) wind stress, (iii) stress curl, (iv) wind convergence, and (v) vorticity

Future:

The OAFlux synthesis framework is versatile and can include latest sensors such as OSCAT.