Updating Advice on Selecting Level-2,3 Surface Vector Wind Datasets: Applications Perspective

Ralph F. Milliff;NWRA/CoRAMark Bourassa;COAPS, Florida State Univ.Dudley Chelton;COAS, Oregon State Univ.Ernesto RodriguezJPL, CalTech

What this review *is* about:

- 1. Definitions L2B, L3 SVW datasets
- 2. Validation of SVW in applications using L2, L3 datasets
- 3. Updating/Coordinating SVW dataset repositories on the web
- 4. How to comment on/recommend L2, L3 SVW datasets to colleagues
- 5. <u>Draft Project Statement</u> (i.e. recommendations to "the community")
- 6. Some L2 and L3 datasets on the (near?) horizon

What this review *is not about*:

- 1. Validation vs. buoys
- 2. Special products (e.g. UHR, coastal winds, σ_0 , τ , L4, etc.)
- 3. "Beauty Contests" or "My Favorite" L2, L3 SVW dataset
- 4. Similarly, "My Favorite" L2, L3 SVW distribution web sites

Definitions:

L2B or Level-2B

In-Swath SVW retrievals (i.e. wind speed and direction) organized in alongand across-track arrays of wind vector cells (WVCs). Daily representations of L2 SVW exhibit gaps in coverage; i.e. between swaths.

flavors include: ASCAT; ERS-1,2; NSCAT and QuikSCAT
 50km, 25km and 12.5km standard spatial resolutions Near Real-Time (NRT) and "science quality"

L3 or Level-3

Gridded SVW fields (usually regular global grids in deg. Lat, Lon) based on L2 SVW inputs. Daily representations of L3 SVW do not exhibit gaps, but gaps have been filled by ancillary processing, often involving ancillary datasets (e.g. weather-center analyses).

- flavors include: single or multi-platform L2 inputs

methods-based constructions (smoothing, Kriging, extrapolation) ancillary data based constructions 0.25° to 2° presentations 4x daily, daily, 3-daily, climatologies

SVW Retrieval:

 \Box L2 SVW datasets different, even given same σ_0

- different/improved methods
- additional validation data

IOVWST Meeting, Annapolis, MD

Invited Review Lecture, May 2011

Kinetic energy as a function of spatial scale

Order of Magnitude difference at ocean Synoptic and Mesoscales

- Chelton, D.B., M.G. Schlax, M.H. Freilich and R.F. Milliff, 2004: "Satellite measurements reveal persistent small-scale features in ocean winds". *Science*, **303**, 978-983.
- Chelton, D.B. and M.H. Freilich, 2005: "Scatterometer-based assessment of 10-m wind analyses from the operational ECMWF and NCEP numerical weather prediction models", *Mon Wea. Rev.*, **133**, 409-429.
- Milliff, R.F., W.G. Large, J. Morzel, G. Danabasoglu and T.M. Chin, 1999: "Ocean general circulation model sensitivity to forcing from scatterometer winds", J. Geophys. Res., **104**C5, 11337-11358.
- Milliff, R.F., J. Morzel, D.B. Chelton, M.H. Freilich, 2004: Wind stress curl and wind stress divergence biases from rain effects on QSCAT surface wind retrievals., *J. Atmos. Ocean. Tech.*, **21**, 1216-1231.
- Milliff, R.F., A. Bonazzi, C.K. Wikle, N. Pinardi and L.M. Berliner, 2011: "Ocean ensemble forecasting, Part I: Mediterranean Winds from a Bayesian Hierarchical Model", *Quart. J. Roy. Met. Soc.*, in press (see early view at: onlinelibrary.wiley.comjournal10.1002(ISSN)1477-870Xearlyview).
- Patoux, J. and R.A. Brown, 2001: "Spectral analysis of QuikSCAT surface winds and two-dimensional turbulence", *J. Geophys. Res.*, **106**D, 23995-24005.

Air-Sea Coupling Amplitude:

Satellite-to-Satellite comparisons yield Strongest Coupling Coefficients

-2 -1 0

-3

2 3

1

N m⁻² per 10,000km

Invited Review Lecture, May 2011

°C per 100km

Dependencies of Mean and Standard Deviation of Mapping Errors on Spatial and Temporal Smoothing

for QuikSCAT and Tandem QuikSCAT/SeaWinds

Note that errors are more sensitive to temporal smoothing than to spatial smoothing.

This is an indication that mapping errors are dominated by temporal sampling.

Schlax, M.G., D.B. Chelton and M.H. Freilich, 2001: "Sampling errors in wind fields constructed from single and tandem scatterometer datasets", J. Atmospheric and Oceanic Technology, **18**(6), 1014-1036.

Repositories:

§ - Near Real-Time products

<u>Comprehensive, Services Driven</u> <u>Update, Coordinate Emphasis</u> podaac-www.jpl.nasa.gov www.osi-saf.org[§] coaps.fsu.edu/scatterometry manati.orbit.nesdis.noaa.gov/datasets[§] cersat.ifremer.fr www.ssmi.com Less Comprehensive, Research Driven

www.ssmi.com www.atmos.washington.edu/~jerome/WINDS/ dss.ucar.edu/datasets/ds744.* www.mers.byu.edu/

	SASS	ESCAT	NSCAT	SeaWinds	ASCAT	Oscat
FREQUENCY	14.6 GHz	5.3 GHz	13.995 GHz	13.6 GHz	5.3 GHz	13.6 GHz
ANTENNA AZIMUTHS	$\sum_{i=1}^{i}$	\leq		\bigcirc	\mathbb{X}	\bigcirc
POLARIZATIONS	V-H, V-H	V ONLY	V, V-H, V	V-OUTER/H-INNER	V ONLY	V-OUTER/H-INNER
BEAM RESOLUTION	FIXED DOPPLER	RANGE GATE	VARIABLE DOPPLER	PENCIL-BEAM	RANGE GATE	PENCIL-BEAM
SCIENCE MODES	MANY	SAR, WIND	WIND ONLY	WIND/HI-RES	WIND ONLY	WIND/HI-RES
RESOLUTION (s °)	nomally 50 km	50 km	25 km	Egg: 25x35 km Slice: 6x25km	25/50 km	Egg: 30x68 km
SWATH, km	~750 ~750	500	600 600	1400,1800	500 500	1400,1836
INCIDENCE ANGLES	0° - 70°	18° - 59°	17° - 60°	46° & 54.4°	25°- 65°	49° & 57°
DAILY COVERAGE	VARIABLE	< 41 %	78 %	92 %	65 %	> 90 %
MISSION & DATES	SEASAT: 6/78 Ð 10/78	ERS-1: 92Ð96 ERS-2: 95Ð01	ADEOS-1: 8/96 Đ 6/97	QuikSCAT: 6/99-11/09 ADEOS-II: 1/02-10/02	METOP: 6/2007-	OceanSat-2: 10/09-

Table stolen from BYU/MERS web site

Advice to Community:

1. Match space-time coherence in SVW with application a) feature-based; more than matching Δx , Δt

- 2. Areal average of instantaneous σ_0 vs. point support (some time averaging)
- 3. Kinetic energy content as a function of spatial scale
 - a) commonly depicted in Fourier spectra; KE vs. k, for spatial wavenumber k
 - b) power-law relations with spectral slopes k^{-2} (mid-latitudes), $k^{-5/3}$ (tropics)
 - ambiguities in Fourier spectral techniques
 - c) true spatial resolution corresponds to spatial scale at which L3 winds depart from $k^{\text{-2}}$ or $k^{\text{-5/3}}$
 - L3 products should not present on grids finer than true resolution
- 4. Use latest validated datasets from authoritative sources (repositories)
- Air-Sea coupling coefficient magnitudes are strongest for satellite datasets;
 e.g. slope of linear relation between SST anomaly and wind stress derivatives (curl and divergence) on scales 10km to 1000km.

Project Statement:

□ Read and comment on Draft Statement (here)

□ Action items for Project leaders (committees)

□ Post Advice (KNMI, PO.DAAC, COAPS, Ifremer, etc.)

Related and Forthcoming L2,L3 SVW Datasets

OceanSat-2 (OSCAT) community datasets

Reprocessing:

OVWST Project at JPL; L2 and L3, when ??? Ku2011 *just released* (RSS; Lucrezia Ricciardulli) KNMI ASCAT L3???

Multi-Platform:

CCMP NWRA/CoRA Global Surface Wind BHM (ensemble winds)

Special Purpose:

BYU Ultra-High-Resolution OSU COAS Coastal Winds L3

Global wind products with 6 hour temporal sampling

Wind products that assimilate many different data sources to produce maps with high temporal sampling typically underestimate the high spatial frequency component of the wind field.

Plots based on 1 year of data.

R. Atlas, R. Hoffman, J. Ardizzone, S. Leidner, and J. C. Jusem, "Development of a new cross-calibrated, multi-platform (CCMP) ocean surface wind product," in AMS 13th Conference on Integrated Observing and Assimilation Systems for Atmosphere,Oceans, and Land Surface (IOAS-AOLS), 2009.

Summary:

- \Box L2 datasets can differ for same σ_0
- Gaps in L2 from swath configurations and rain
- □ L3 datasets fill gaps in a variety of ways
- □ Applications Users have to evaluate feature/phenomena resolution in L3 data
- □ KE vs k and true spatial resolution
- □ Air-Sea coupling coefficients strongest in satellite datasets
- □ Filtering/Averaging to improve S/N at expense of resolution
- □ Temporal filtering has most dramatic effects
- Prominent SVW dataset repositories should be coordinated (updated)
- □ Project statement to guide potential users (need feedback)
- New datasets

<u>GO TO</u> OSI SAF CENTRAL WEB SITE

<complex-block>

Select view

- > Monitoring information
- > Buoy validations
- > Data from previous day

Background information

- Modifications/anomalies
 Description of plots
 Access to products
 Acknowledgements
 ASCAT Product User
 Manual
 ASCAT 12.5-km
 Validation report
 Home OSI SAF Wind Centre
 OSI SAF Wind Products
 ASCAT 25-km winds
 - ASCAT 25-km winds
 - Operational status
 - > ASCAT Coastal winds
 - Demonstration status
- 🔫 > QuikSCAT winds
 - Discontinued status
 - Wind Products

Processing Status

8*0

Other Wind Services at KNMI

> ASCAT 25-km winds

Descending passes Click in the map to zoom in

60°W

40°W 20°W

0*

20"E 40"E

60"E 20"E

100"E 120"E 140"E 160"E

100°W 80°W

70*N

60*N

50.1

40*

30"N

20"N

0*

10*8

20*8

3018

40*8

50*5

60*8

70*8

160"W 140"W

Documentation

QSCAT

A tabular summary provides key details. Additional information is given in written descriptions following the table. The names of the products in the table are linked to the written descriptions. These descriptions include contact information, sites from which the data is available (or email contact with the people who will send the data), links to documentation, links to read routines, and references.

Data Set	Spatial Coverage	Spatial Grid	Temporal Coverage	Temporal Grid	Data Fields	Non-QSCAT Input	Processing Technique
Project Level 3	Global (in swaths)	0.25x0.25°	20 July 1999 and ongoing	Daily	u, v, ?	None	Vector average within swaths
COAPS/FSU Objectively Analyzed	Global	1x1°	20 July 1999 and ongoing	6 hourly	UW, VW	None	Variational method, with objectively determined weights
COAPS/FSU Objectively Analyzed	Gulf of Mexico	0.5x0.5°	20 July 1999 and ongoing	6 hourly	UW, VW	None	Variational method, with objectively determined weights
Blended QSCAT/NCEP u,v Surface Winds from Morzel, Milliff, and Chin	Global	0.5x0.5°	July 1999 and ongoing	6 hourly	u, v	NCEP winds	wavelet based multiresolution analysis: QSCAT in swaths; NCEP in gaps, enhanced with QSCAT-derived high-wavenumber variability
Tang and Liu	Global	0.5x0.5°	20 July 1999 and ongoing	12 hourly	u, v	ECMWF	Successive correction

Definitions for Symbols

All scatterometer derived wind and pseudostress quantities are equivalent neutral values, unless explicitly stated otherwise. Further explanations for the winds, pseudostresses, and stresses are available.

Field Variable	Definition
u	West-to-East component of the wind (positive Eastward)
V	South-to-North component of the wind (positive Northward)
w	Wind speed. Note that wind speeds can be averaged as vectors or scalars, and that the differences can be substantial. See the detailed product description for the type of averaging.
UW	West-to-East component of the pseudostress (positive Eastward)
VW	South-to-North component of the pseudostress (positive Northward)
tX	West-to-East component of the surface stress (positive Eastward)
ty	South-to-North component of the surface stress (positive Northward)