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CLIMODE Deployments and Cruises

* November 2005: Mooring
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CLIMODE Deployments and Cruises
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November 2005: Mooring
& Profiler Deployment
Cruise

January 18-30, 2006: Pilot
Experiment, ASIS/FILIS
Deployment

October 2006: Mooring
Turnaround Cruise

February-March 2007: 6-
week Main Experiment,
ASIS/FILIS Deployments,
Microstructure, Surveys.

February 2007: Mooring
Recovery Cruise



The Gulf Stream
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* Cold air outbreaks drive extremely active convection over
the region.

* The net winter heat loss in this region is 400 W/m2.
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Sensor Packages
* R/V Atlantis and Knorr

— 2-3 DCFS (Sonic/MotionPak/Licor)
— IR and Solar Radiometers

— IR SST

— RH/T/P Sensors

— ShipSystem (Precip, T

* ASIS
— DCFS (Sonic/MotionPak/Licor)
— IR and Solar Radiometers
— RH/T/P Sensors
— 6 Wave Wires

— Subsurface (T
* Discus

— Low Power DCFS (Sonic/MotionPakIII)
— Redundant IR and Solar Radiometers

— Redundant U/RH/T/P Sensors (ASIMET)
— Subsurface (T/S, Nortek, VACM)
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Moving Platform vs. Fixed Tower

CBLAST 8m vs 5m RMS: 0.0053842 m/s R? 0.92777
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Moving Platform vs. Fixed Tower

CBLAST 8m vs 5m RMS: 0.0053842 m/s R? 0.92777
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Bulk Aerodynamic Method

Latent Heat Flux: p L, <wg> Lp L C. AUAQ

Sensible Heat Flux: p ¢, <wB> [1p ¢ C,, AUAO

@tum Flux: -p<uw> -p C, @

Direct Covariance Bulk Aerodynamic




Drag Coeificient Formulas

* Semi-empirical

TOGA-COARE 4.0

£

Surface Roughness

* “Empirical”

Large &
Pond (1981)

Wind Speed Dependent



Drag Coeificient Formulas

* Semi-empirical

TOGA-COARE 4.0

£

Surface Roughness

* COARE parameterizes the roughness length as:

Charnock Parameter



MBL/CBLAST/CLIMODE Drag Coefficients
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Wave Age Dependent Drag

Inverse Wave Age versus Wind Speed
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Wave Age Dependent Drag
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Flux Time Series
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Summary

A wind speed dependent drag coefficient give good results over a
wind range of sea-states/wave-ages.
— This requires a wind speed dependent Charnock variable

— Numerous investigations have shown that the Charnock variable is
dependent on wave-age.

— However, these findings can be reconciled since observed wave ages over
the coastal and open ocean are clearly associated with wind ranges.



QuikSCAT Wind Speeds
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uikSCAT vs. Buoy Wind Direction

Comparison with QUIKSCAT
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QuikSCAT vs. Buoy Wind Speeds

Comparison with QUIkSCAT
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Atmospheric Forcing
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Stability Effects Near SST Fronts
* Boundary Layer Adjustment

— Baroclinic adjustment to horizontal temperature gradients.
— Acceleration/deceleration of surface winds.

 Surface Layer Adjustment
— QuikSCAT measures surface roughness/stress
— Surface stress is proportional to neutral winds, U

« U, < U in unstable conditions

« Uy, > U in stable conditions

* Mesoscale Adjustment to SST fronts

— Combination of both?



QuikSCAT vs. Buoy Wind Speeds

“Surface Layer Adjustment”

Unstable u,: 0.26358 m/s
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QuikSCAT vs. Buoy Wind Speeds

“Surface Layer Adjustment”
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QuikSCAT vs. Buoy Wind Speeds

“Surface Layer Adjustment”

=====J(2) Unstable, 10/L =-0.5
— UN(2) Unstable
=====J(z) Stable, 10/L=0.2
— UN(z) Stable

Unstable u,: 0.27734 m/s

Stable u,: 0.24755 m/s

Winds Speed (m/s)
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QuikSCAT vs. Buoy Wind Speeds

“Surface Layer Adjustment”
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QuikSCAT vs. Buoy Wind Speeds

“Surface Layer Adjustment”
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QuikSCAT vs. Buoy Wind Speeds

“Boundary Layer (Baroclinic) Adjustment”
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Coupling Coefficients
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30 Day Perturbations

Latitude
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Lengitude

WATER SURFACE TEMPERATURE
From AYHRRE data for a time interval of
6.11 days ending 2407 Jan 13 Q3:37 UT
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QuikSCAT vs. Buoy Wind Speeds

“Boundary Layer (Baroclinic) Adjustment”

Perturbations from 30 day mean
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QuikSCAT vs. Buoy Wind Speeds

“Boundary Layer (Baroclinic) Adjustment”

Perturbations from 30 day mean
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QuikSCAT vs. Buoy Wind Speeds

“Boundary Layer (Baroclinic) Adjustment”

No obvious trend in
Perturbations from 30 day mean perturbations When
computed versus sea-air
virtual temperature
difference.
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QuikSCAT vs. Buoy Wind Speeds

“Boundary Layer (Baroclinic) Adjustment”

However, it becomes
more obvious when you
only look at cold/cool
air advection.

Perturbations from 30 day mean, CAD only
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QuikSCAT vs. Buoy Wind Speeds

“Boundary Layer (Baroclinic) Adjustment”

However, it becomes
more obvious when you
only look at cold/cool
air advection.

Perturbations from 30 day mean, CAD only
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Summary

A wind speed dependent drag coefficient give good results over a
wind range of sea-states/wave-ages.
— This requires a wind speed dependent Charnock variable

— Numerous investigations have shown that the Charnock variable is
dependent on wave-age.

— However, these findings can be reconciled since observed wave ages over
the coastal and open ocean are clearly associated with wind ranges.

Some of the variability in the QuikSCAT winds is due to
adjustment of the neutral wind to changes in stratification and not
changes in the actual wind speeds.

— This variability obeys MO-Similarity in the mean.

— This effect enhances the gradient in neutral winds but not actual.

— Significant variability in the QuikSCAT winds is not explained by this effect

The one-buoy approximation of the coupling coefficients is in
reasonably good agreement with previous studies.
— This includes the neutral wind, measured wind, and directly measured stress.
— The physical processes responsible for this correlation is ...

Compare stress!



Thanks to NSF and NASA for supporting this
research.



QuikSCAT vs. Buoy Wind Speeds

“Surface Layer Adjustment”

Stable u,: 0.22079 m/s
Unstable u,: 0.26358 m/s

Winds Speed (m/s)
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