An Investigation of Atmospheric Stability and Its Impact on Scatterometer Winds Across the Gulf Stream

Jim Edson University of Connecticut Doug Vandemark & Amanda Plagge University of New Hampshire

CLIMODE Deployments and Cruises

- November 2005: Mooring & Profiler Deployment Cruise
- January 18-30, 2006: Pilot Experiment, ASIS/FILIS Deployment
- October 2006: Mooring Turnaround Cruise
- February-March 2007: 6week Main Experiment, ASIS/FILIS Deployments, Microstructure, Surveys.
- November 2007: Mooring Recovery Cruise

CLIMODE Deployments and Cruises

- November 2005: Mooring & Profiler Deployment Cruise
- January 18-30, 2006: Pilot Experiment, ASIS/FILIS Deployment
- October 2006: Mooring Turnaround Cruise
- February-March 2007: 6week Main Experiment, ASIS/FILIS Deployments, Microstructure, Surveys.
- February 2007: Mooring Recovery Cruise

The Gulf Stream

- Cold air outbreaks drive extremely active convection over the region.
- The net winter heat loss in this region is 400 W/m2.

Sensor Packages

- R/V Atlantis and Knorr
 - 2-3 DCFS (Sonic/MotionPak/Licor)
 - IR and Solar Radiometers
 - IR SST
 - RH/T/P Sensors
 - ShipSystem (Precip, T_{sea}, Salinity, ADCP)
- ASIS
 - DCFS (Sonic/MotionPak/Licor)
 - IR and Solar Radiometers
 - RH/T/P Sensors
 - 6 Wave Wires
 - Subsurface (T_{sea}, Salinity, ADCP, Nortek)
- Discus
 - Low Power DCFS (Sonic/MotionPakIII)
 - Redundant IR and Solar Radiometers
 - Redundant U/RH/T/P Sensors (ASIMET)
 - Subsurface (T/S, Nortek, VACM)

Moving Platform vs. Fixed Tower

Uncorrected

Moving Platform vs. Fixed Tower

Corrected

Bulk Aerodynamic Method

Latent Heat Flux: $\rho L_v < wq \ge \rho L_v C_E \Delta U \Delta Q$

Sensible Heat Flux: $\rho c_p < w\theta \ge \cong \rho c_p C_H \Delta U \Delta \Theta$

Momentum Flux: $-\rho < uw > \simeq -\rho C_D \Delta U^2$

Direct Covariance Bulk Aerodynamic

Drag Coefficient Formulas

• Semi-empirical

Drag Coefficient Formulas

• Semi-empirical

COARE parameterizes the roughness length as:

$$z_{o} = \alpha \frac{v}{u_{*}} - \beta(U_{10}) \frac{u_{*}^{2}}{g}$$

Charnock Parameter

MBL/CBLAST/CLIMODE Drag Coefficients

Wave Age Dependent Drag

 $u_* / c_p = 0.0036 U_{10N} - 0.007$

Wave Age Dependent Drag

 $\beta = A(c_p / u_*)^{-B}$ plus $u_* / c_p = 0.0036U_{10} - 0.007$ equals ECMWF

Flux Time Series

Summary

- A wind speed dependent drag coefficient give good results over a wind range of sea-states/wave-ages.
 - This requires a wind speed dependent Charnock variable
 - Numerous investigations have shown that the Charnock variable is dependent on wave-age.
 - However, these findings can be reconciled since observed wave ages over the coastal and open ocean are clearly associated with wind ranges.

QuikSCAT Wind Speeds

QuikSCAT vs. Buoy Wind Direction

QuikSCAT vs. Buoy Wind Speeds

Atmospheric Forcing

Sikora et al. (1995)

PO.DAAC

Stability Effects Near SST Fronts

- Boundary Layer Adjustment
 - Baroclinic adjustment to horizontal temperature gradients.
 - Acceleration/deceleration of surface winds.
- Surface Layer Adjustment
 - QuikSCAT measures surface roughness/stress
 - Surface stress is proportional to neutral winds, $\boldsymbol{U}_{\scriptscriptstyle N}$
 - $U_N < U$ in unstable conditions
 - $U_N > U$ in stable conditions
- Mesoscale Adjustment to SST fronts
 - Combination of both?

 $U(z) = u_* / \kappa [\ln(z/z_o) - \psi_m(z/L)]$

 $\overline{U(z)} = u_*/\kappa[\ln(z/z_o) - \psi_m(z/L)] \quad U_N(z) = u_*/\kappa[\ln(z/z_o)]$

 $U(z) = u_{*}/\kappa[\ln(z/z_{o}) - \psi_{m}(z/L)] \quad U_{N}(z) = u_{*}/\kappa[\ln(z/z_{o})]$

 $U(z) = u_* / \kappa [\ln(z/z_o) - \psi_m(z/L)] \qquad U_N(z) = u_* / \kappa [\ln(z/z_o)]$

 $U(z) = u_* / \kappa [\ln(z/z_o) - \psi_m(z/L)] \qquad U_N(z) = u_* / \kappa [\ln(z/z_o)]$

Coupling Coefficients

O'Neill et al. (submitted)

30 Day Perturbations

Courtesy of JHU/APL

O'Neill et al. (submitted)

No obvious trend in perturbations when computed versus sea-air virtual temperature difference.

However, it becomes more obvious when you only look at cold/cool air advection.

JHU/APL

However, it becomes more obvious when you only look at cold/cool air advection.

JHU/APL

Summary

- A wind speed dependent drag coefficient give good results over a wind range of sea-states/wave-ages.
 - This requires a wind speed dependent Charnock variable
 - Numerous investigations have shown that the Charnock variable is dependent on wave-age.
 - However, these findings can be reconciled since observed wave ages over the coastal and open ocean are clearly associated with wind ranges.
- Some of the variability in the QuikSCAT winds is due to adjustment of the neutral wind to changes in stratification and not changes in the actual wind speeds.
 - This variability obeys MO-Similarity in the mean.
 - This effect enhances the gradient in neutral winds but not actual.
 - Significant variability in the QuikSCAT winds is not explained by this effect
- The one-buoy approximation of the coupling coefficients is in reasonably good agreement with previous studies.
 - This includes the neutral wind, measured wind, and directly measured stress.
 - The physical processes responsible for this correlation is ...
- Compare stress!

Thanks to NSF and NASA for supporting this research.

 $U(z) = u_{*}/\kappa[\ln(z/z_{o}) - \psi_{m}(z/L)] \quad U_{N}(z) = u_{*}/\kappa[\ln(z/z_{o})]$