

Koninklijk Nederlands Meteorologisch Instituut Ministerie van Verkeer en Waterstaat

Numerical Weather Prediction

OceanSat-2 Scatterometer Calibration and Validation

May 2011

Ad Stoffelen Anton Verhoef

Koninklijk Ne leflands roppean Involvement OSCAT

- OceanSat-2 AO project:
 - KNMI (PI), ECMWF, UK Met.Office, Meteo France, IFREMER, CMIMA
 - KNMI contribution in context of EUMETSAT Ocean and Sea Ice SAF and NWP SAF
 - Cal/Val uses European QuikScat heritage
 - OWDP: OSCAT Wind Data Processor (clone SDP)
 - Experimental NRT OWDP at KNMI
- MoUs EUMETSAT-ISRO-NOAA arranging:
 - Global orbit dumps at Svalbard
 - L0 and L1/2 processing in India and at EUMETSAT (backup)
 - Dump, processing and distribution trial ongoing
 - Timeliness within 1 hour through EUMETCAST

OWDP at KNMI

Very grateful for NRT data since mid March First assessment done

OSCAT AO project principle

- OSCAT provides Ku band Normalized Radar Cross Section, NRCS, or σ^0
- $\sigma^{\rm o}$ is a geophysical quantity with a given true PDF over the world oceans
- All instruments should provide a similar σ^0 PDF
- Ku-band VV and HH provided by SeaSat, NSCAT, SeaWinds and OSCAT
- KNMI's SeaWinds Data Processor (SDP) uses NSCAT GMF
 Since the instruments are similar, we expect that the SeaWinds (QSCAT) wind processing applied to OSCAT σ⁰ data produces a PDF similar to the SeaWinds wind PDF
- This would imply intercalibration of OSCAT and QSCAT, a requirement to establish a QSCAT/OSCAT FCDR

> Are the OSCAT σ^{0} and wind PDFs similar to the QSCAT σ^{0} and wind PDFs ?

Contains "slice" σ⁰
Slices form an "Egg"
An egg is one radar return

A WVC view is build from slices gg

Slice

10VWST May '11

50

AT Wind Data Processor - OWDP

$$\sigma^{0} = \frac{\sum_{S} \alpha_{S}^{-1} \sigma_{S}^{0}}{\sum_{S} \alpha_{S}^{-1}}$$

- $\alpha_{\rm S}^{-1}$ is a measure of the slice area
- Several egg footprints in one WVC
- Except in case of (L2A sigma0 flags):
 - Sigma0 is poor
 - Kp is poor

linisterie van Verkeer en Waterstaat

- Invalid footprint
- Footprint contains saturated slice
- SeaWinds data processor (SDP) clone

L2A WVC

 \succ Median of v2011 σ pdf ~1 dB low v2011 σ^0 pdf truncated at -38 dB (-37 dB) Improved w.r.t. KNMI truncation in v2010 at Further analysis ongoing, e.g., of -ve σ^0

OWDP vs ECMWF

- 1dB corrected σ^0
- SDs given
- OSCAT MLE norm
- Speed bias vanished
- Improved wind direction
- Reduced cut-off due to σ^0 PDF at ~2 m/s
- VRMS diff. ECMWF

1.9 m/s (as SDP25)

Lower than OSI SAF VRMS error requirement of 2 m/s

ISRO L2B vs ECMWF

- SDs of differences given
- Outliers reason for degradation w.r.t. OWDP ?
- Bias at low speeds
- Vector RMS difference of 2.6 m/s (>2 m/s)

OSCAT 50-km product SDs v2010

L2B, collocated OWDP, \geq 6 m/s

OWDP, collocated L2B, \geq 6 m/s

- OWDP winds verify better with buoys than ISRO L2B does (in vector RMS)
- > OWDP provides winds closer to the coast
- Low OWDP winds are relatively poor due to the backscatter PDF bias
- ➢ v2011 is improved in this respect

- Shear
- Straight streamlines
- Wind direction
 continuity
 constraint in
 AR
- Speed outlier (in rainy area)

- Rotation and shear
- Explicit constraints in 2DVAR
- Consistency
- Rain flagged orange by normalised MLE (2%)

Preliminary analysis

- 2011 ISRO data presents a clear step forward
- OSCAT provides useful measurements from space fulfilling user requirements
- σ^{0} PDF biased and cut off for lower winds; fixes are needed
- Verification within spec. against buoys > 4 m/s;
- Ambiguity removal in ISRO L2B seems too smooth
- A 6-month reprocessed data set has recently been provided
- More detailed analysis to be done, i.e., check MLE norm analysis (*Kp*), rain flagging and QC, sea ice (Bayesian algorithm)

Koninklik Neteoralds hnical issues/user expectations

- Need controlled processing software update procedures with users in loop (parallel streams)
- QA and automated product quality flag (in OWDP)
- Service messages
- BUFR; is used for OWDP
 - QuikScat template;
 - WMO approval by EUMETSAT
- All useful items of BUFR message filled; e.g., input winds used for AR not in ISRO L2B at the moment
- NRT; as timely as possibly feasible
- Handle on orbit duplication

Koninklijk Nederlands Meteorologisch Instituut Ministerie van Verkeer en Waterstaat

Conclusions

- NRT data stream on EUMETCAST
- OWDP and monitoring run experimentally at KNMI
- OSI SAF OWDP winds are within requirements; OSCAT does look like QSCAT
- Experimental version of OWDP will be made available
- Further analysis of the data is needed
- A high-quality FCDR of OSCAT and QSCAT appears well feasible

Koninklijk Nederlands Meteorologisch Instituut Ministerie van Verkeer en Waterstaat

References

Publications on SDP, 2DVAR, sea ice, QC/rain, stress, buoy verification, ... :

<u>www.nwpsaf.org</u> <u>scat@knmi.nl</u> <u>www.osi-saf.org</u> <u>www.knmi.nl/scatterometer/publications/</u>

www.knmi.nl/publications/; search "Stoffelen"

WVC slice averaging

Koninklijk Nederlands Meteorologisch Instituut Ministerie van Verkeer en Waterstaat

• We compute WVC σ^0 and *Kp* α , β , γ for each view as

Recapitulate L2A slices

- $Kp_{s}^{2} = \alpha_{s} + \beta_{s} / SNR_{s} + \gamma_{s} / SNR_{s}^{2}$ = $f_{s}(\sigma_{s}^{0})$ for a slice of given size
- α_{s} , β_{s} , γ_{s} and SNR_{s} depend on slice bandwidth B_{s}
- $\alpha_{\rm s}/\beta_{\rm s}$ and $\alpha_{\rm s}/\gamma_{\rm s}$ constant

Dynamic range s0 has decreased

> Some noise on some B_s values now

L2A σ_{S}^{0} , Kp_{S}

IDUTE VALLACIACE CIT VVALCIDIAN

- Analysis of σ⁰_s slices collocated in a WVC
 ➢ No bias
- ➢ Increasing noise for decreasing σ_{s}^{0} largely compatible with Kp_{s} : e.g., SD of 1.5 dB at -5 dB

ee

WVC slice averaging (1) Meteorologisch Instituut

- In a WVC the ocean backscatter for a given view is assumed constant, e.g., σ^0
- A measured slice backscatter can be written as • $\sigma_{\rm s}^0 = \sigma_{\rm s}^0 (1 + t_{\rm s} K p_{\rm s})$ with t_s a random sample from N(0,1)
- Different slices have different t_s and Kp_s (i.e., $G_s^2A_s/R_s^4$) •
- So, for a constant σ^0 , the σ^0_s and Kp_s in a WVC vary ٠
- Kp_s varies with $\langle \sigma^0 \rangle$, but is modelled as a function of $\sigma_{s}^{0} \neq \langle \sigma^{0} \rangle$, i.e., including t_{s}
- \succ How to exclude t_s ?

Koninklijk Nederlands

Ainisterie van Verkeer en Waterstaat

- The Kp_s component ratios of α_s/β_s and α_s/γ_s are independent of σ_s^0 and • for given σ_{s}^{0} , α_{s} is proportional to Kp_{s}
- Since $\langle \sigma^0 \rangle$ is assumed invariant in a WVC, α_s provides appropriate • weight ratios in averaging the different σ_{s}^{0} in a WVC

WVC slice averaging (3)

• WVC view *SNR* is obtained from slice signal power

$$P_{s} = X_{s}\sigma^{0}{}_{s} = 2 \cdot SNR_{s} / \beta_{s}$$
$$P = \sum_{s} P_{s}$$

Koninklijk Nederlands Meteorologisch Instituut Ministerie van Verkeer en Waterstaat

- *Kp* is used for normalisation of *MLE* and in *p*(*MLE*)

- Log density contour plot of simulated ECMWF and measured L2A WVC σ⁰
- Median of pdf not on diagonal
- σ⁰ bias below
 -27 dB
- Ad hoc correction further truncates PDF at -33 dB !

- Depends only on varying $B_{\rm s}$ contributions $(T_{D} \text{ is fixed})$
- $B_{\rm c}$ is fixed per slice type

 \succ High σ° has fewer slices contributing?

ST, May 2011

1.40 m/s

OWDP vs ECMWF

- Corrected σ^{0}
- SDs given
- Now 5% QC as for QuikScat; similar to L2B
- OWDP improves w.r.t. L2B
- No speed bias
- Cut-off due to σ^{0} PDF at 3 m/s
- No outer swath processed yet in OWDP

1.33 m/s

13.85 deg

v2010 1.62 m/s

1.55 m/s

OWDP vs ECMWF

- Uncorrected σ^{0}
- SDs given
- 5% QC as for QuikScat; similar to L2B
- OWDP improves w.r.t. v2010
- Speed bias of ~0.9 m/s
- Reduced cut-off due to σ^0 PDF at ~2 m/s

Koninklijk Nederlands Meteorologisch Instituut Ministerie van Verkeer en Waterstaat

- Without WVC flags:
 - Rain present/doubtful
 - High winds, possibly rain contamination

ISRO L2B vs ECMWF

- SDs of differences given
- Outliers reason for degradation w.r.t. QDP ?

Bias at low speeds

Effect of scale error on RMS

- Downscaling reduces RMS(x-y)
 RMS(x-y)/√s provides better measure
 Calibrate before error accessment
- Calibrate before error assessment

IOVWST, May 2011

 $RMS(x-y) = \sqrt{\langle (x-y)^2 \rangle}$ $= \sqrt{(1-s)^2}\sigma^2 + \varepsilon_x^2 + s^2\varepsilon_y^2$

SeaWinds 2	25 - km	product
------------	----------------	---------

NOAA product, including outer swath
NOAA product, no outer swath data
OSI SAF , no outer swath data
NOAA product, collocated OSI SAF
OSI SAF , collocated with NOAA product

	# wind vectors	speed bias	stdev <i>u</i>	stdev v	
	3845	0.25	2.54	2.51	
	3276	0.20	2.47	2.18	
	3061	-0.48	1.79	1.88	
	2954	0.15	2.19	1.99	
t	2954	-0.49	1.76	1.83	

- Outer swath winds appear degraded in NOAA product
- ➢ OSI SAF winds verify better with buoys than NOAA does (in RMS)
- ➢ OSI SAF wind is biased low
- ➢ OSI SAF collocation much helps NOAA wind SD and bias (rain)
- ➢ NOAA QC has modest impact on OSI SAF product

L2B vs buoys

- SDs of differences given
- 131 buoys
- Speed outliers near 15 m/s indicate rain
- Wind direction outliers may be AR problem

OWDP vs buoys

- SDs of differences given
- 158 buoys
- Cut-off visible in f and u
- Improved QC w.r.t. L2B, particularly visible in speed PDF
- 27 additional coastal buoys; more coastal winds in OWDP than L2B

1.37 m/s

23.91 deg

v2010 2.27 m/s

2.20 m/s

OWDP vs buoys

at L2B WVCs

SDs given

• 130 buoys

≥ 28 (extratrop.)

Vector RMS

within SAF

specs!

buoys removed

v2010 2.11 m/s

2.06 m/s

22.82 deg

1.25 m/s

L2B vs buoys at OWDP points

- SDs given
- 130 buoys

Collocation
 improves
 OWDP scores,
 particularly
 direction; 20
 near-coast
 buoys drop out

OSCAT 50-km product SDs	SD Speed	Direc
v2010	111/5	ue
L2B, 131 buoys	1.46	23.
OWDP, 158 buoys	1.37	23.
L2B, 130 buoys, collocated OWDP	1.38	22.
OWDP, 130 buoys, collocated L2B	1.25	22.
L2B, collocated OWDP, \geq 6 m/s	1.34	19.
OWDP, collocated L2B, \geq 6 m/s	1.33	16.

Ds	SD Speed m/s	Direction degree	SD <i>u</i> m/s	SD v m/s
	1.46	23.56	2.38	2.35
	1.37	23.91	2.27	2.20
	1.38	22.17	2.29	2.18
	1.25	22.82	2.11	2.06
	1.34	19.40	2.41	2.30
	1.33	16.67	2.02	2.12

- L2B includes outer swath winds in first row, while OWDP and L2B do not in the other rows
- OWDP winds verify better with buoys than L2B does (in vector RMS)
- Low OWDP winds are relatively poor due to the backscatter PDF biases (this results in a lowsy u component, but a very reasonable v component)

Koninklijk Nederlands Meteorologisch Instituut Ministerie van Verkeer en Waterstaat

> ISRO spectra show increased variance at small scales w.r.t ECMWF

--- u SDP --- u ECMWF --- v SDP --- v ECMWF

SDP@25 (MSS)

- SeaWinds contains small scales down to 50 km
- Smooth decay, same for u and v
- Indication of noise floor, probably due to rain
- Similar to NOAA products
- $k^{-2.1}$ and not $k^{-1.7}$ like ASCAT

Stoffelen et al., IOVWST, 2010

• v component

u SDP

v SDP

L2B spectra

• u component

Koninklijk Nederlands Meteorologisch Instituut Ministerie van Verkeer en Waterstaat

OWDP spectra

 OWDP has slightly more small-scale
 variance in v
 component
 than ISRO

