

Ultra-High Resolution ASCAT Products & Progress in Simultaneous Wind/Rain Retrieval

> David G. Long Brigham Young University

Ocean Vector Wind Science Team Meeting 18-20 May 2010

Introduction

• σ^0 imaging

- SIR/AVE optimized for ASCAT
- Beta version of ASCAT enhanced resolution land/ice products now available at the Scatterometer Climate Record Pathfinder (www.scp.byu.edu)

• Wind

 Ultra-high resolution (UHR) (1.25 km/pixel) ASCAT wind processing now operational

Simultaneous wind/rain (SWR) retrieval

- Bayes estimator selection to optimally select between windonly, SWR, and rain-only retrieval
- Rain flag and correction

Conventional Resolution SIR Enhanced Resolution

ASCAT Resolution Enhancement

- ASCAT SZF comparable to QuikSCAT L1B slices
 - Reconstruction to enhance resolution
 - Single pass for winds
 - Multipass for land/ice
 - SZF slice spatial response function derived with aid of Julian Wilson
- Adapt NSCAT version of SIR to deal with incidence angle
 - Two images: σ^0 at 40° (A) and incidence angle slope (B)

 $\sigma_{\mathrm{dB}}^{\mathbf{0}} = \mathcal{A} + \mathcal{B}(\theta_i - 40^\circ)$

SIR algorithm "tuned" for ASCAT

ASCAT slice response function

ASCAT Enhanced Resolution Land/Ice Images

- Images on standard grids
 - Aids in comparison and data fusion with other sensors
- Resolution enhanced products: <u>AVE</u>, <u>SIR</u>, <u>none</u> (gridded)
 - AVE and SIR enable higher spatial resolution
 - Support studies otherwise not possible
 - Standard incidence angle
- Trade noise, spatial and temporal resolution
 - Combine multiple passes
 - Separate single pass, local time-of-day, daily, multi-day products
 - Longer integrations improve spatial resolution, reduce noise
 - Smooth temporal change
 - Local time-of-day products provide high temporal resolution while combining multiple passes in the polar regions

Image data now available from the Scatterometer Climate Pathfinder www.scp.byu.edu

ASCAT & QuikSCAT Comparison

V-pol A Images

ASCAT Slice (SZF) 5.255 GHz σ⁰ at 40⁰ 2.225 km pixels Qui

QuikSCAT Slice 13.4 GHz σ⁰ at 54⁰

Enhanced Resolution ASCAT Observations

• Spill alters wave spectrum, visible in enhanced resolution sigma-0 images

JD 117, 2010, two days after leak begins

Enhanced Resolution ASCAT Observations

• Spill alters wave spectrum, visible in enhanced resolution sigma-0 images

JD 118, 2010

Enhanced Resolution ASCAT Observations

• Spill alters wave spectrum, visible in enhanced resolution sigma-0 images

JD 119, 2010

Enhanced Resolution ASCAT Observations

• Spill alters wave spectrum, visible in enhanced resolution sigma-0 images

JD 120, 2010

Enhanced Resolution ASCAT Observations

• Spill alters wave spectrum, visible in enhanced resolution sigma-0 images

JD 122, 2010

Enhanced Resolution ASCAT Observations

• Spill alters wave spectrum, visible in enhanced resolution sigma-0 images

JD 124, 2010

Enhanced Resolution ASCAT Observations

• Spill alters wave spectrum, visible in enhanced resolution sigma-0 images

JD 127, 2010

Enhanced Resolution ASCAT Observations

• Spill alters wave spectrum, visible in enhanced resolution sigma-0 images

JD 131, 2010

Enhanced Resolution ASCAT Observations

• Spill alters wave spectrum, visible in enhanced resolution sigma-0 images

JD 132, 2010

Enhanced Resolution ASCAT & QuikSCAT

Enhanced resolution false color image using a single day (JD 217, 2008) of data from Ku-band QuikSCAT and C-band ASCAT.

- Red: QuikSCAT h-pol σ° at 46°
- Green: QuikSCAT v-pol σ^{o} at 45°
- Blue: ASCAT v-pol σ^{o} at 40°
- Open ocean is blue/green. Dark purple is young first year sea ice. Older first year and multi-year sea ice are yellow/gold. Glacial ice that has melted/refrozen is white, with unmodified firn showing as browns and golds. Icebergs show up a as white.

 Dual-frequency offers more discrimination capability than single frequency

UHR ASCAT Wind Retrieval

- Single-pass processing of ASCAT data enables production of ultrahigh-resolution (UHR) winds
 - AVE enhanced resolution sigma-0 fields are generated separately for each "flavor" (fore / mid / aft)
 - Winds are retrieved for each UHR pixel using KNMI algorithm
 - Fine scale wind features visible
 - 1.25 km/pixel WVCs
 - Effective resolution lower, estimated to be ~10-12 km
 - Ambiguity selection: closest to EPS 12.5 km winds
 - Improved UHR selection algorithms in development, as is ASCAT UHR SWR
- ASCAT UHR wind much less noisier than QuikSCAT UHR winds
 - Effective resolution of ASCAT UHR coarser than QuikSCAT UHR
- "Postage stamp" processing similar to QuikSCAT UHR "Postage stamp" processing for NOAA "invest" areas and named storms
 - Code now being installed at NOAA/NESDIS
 - Sample results below

ASCAT UHR Hurricane Observation Example

 Parma (rev 15334, 23 Oct 2009)

ASCAT UHR Hurricane Observation Example

Nvida
(rev 16094, 25
Nov 2009 09:00)

QuikSCAT*

Simultaneous Wind/Rain Retrieval

- Rain affects 4 to 10% of observations
- Several estimators
 - Wind-only (W-O) (conventional wind retrieval)
 - Good wind performance
 - Severe bias during rain
 - Simultaneous Wind-Rain (SWR)
 - Noisy in non-raining cases
 - Good during low to moderate wind and rain
 - Rain-only (R-O)
 - Good during high to extreme rain with low wind
- How can we optimally choose which estimator to use when true conditions are unknown?
 - Ideal choice: Chose estimator with minimum squared error, e.g. Cramer-Rao lower bound (CRB)
 - Bayes algorithm for regime selection developed (paper in review)

*This also applies to ASCAT which is also sensitive to rain. ASCA can retrieve rain using simultaneous wind/rain retrieval, see C. Nie and D.G. Long, "A C-Band Scatterometer Simultaneous Wind/Rain Retrieval Method," *IEEE Transactions on Geoscience and Remote Sensing,* Vol. 46, No. 11, pp. 3618-3632, 2008.

Wind speed (m/s)

Cramer-Rao bound for various estimators

Wind speed (m/s)

QuikSCAT UHR Case Study

QuikSCAT SWR speed

QuikSCAT W-O speed

Case Study Estimator Selections

Ideal selector R-O SWR 200 250 N-C

QuikSCAT estimate selector

Ideal selection based on TRMM-PR rain

QuikSCAT Bayes speed*

*rain-only selection results in no-speed

Global

Overall Wind Performance

(averaged over hundred's of QuikSCAT/TRMM-PR collocations

- Bayes estimator selection (between W-O, SWR, R-O) has reduced error compared to conventional wind-only retrieval
 - Substantially reduced bias
 - Smaller RMS error

* rain-only retrieval results in discarding of high error winds

Summary

- Enhanced resolution processing effective for ASCAT
- High resolution land/ice SZF-based images now available from the Scatterometer Climate Record Pathfinder web/ftp site www.scp.byu.edu
- ASCAT Ultra-High-Resolution (UHR) wind products now going operational at NOAA/NESDIS
 - In time for 2010 hurricane season
 - Custom "postage stamp" regions available "on demand"
- Validation of QuikSCAT Bayes estimator selection between wind-only (conventional), simultaneous wind/rain, and rain-only retrieval
 - An effective rain impact flag
 - Papers in review

Greenland

Dual Frequency Scatterometry

- Single day (JD 217, 2008) false color enhanced resolution image of Greenland from QuikSCAT and ASCAT
 - Red: QuikSCAT h-pol
 - Green: QuikSCAT v-pol
 - Blue: ASCAT v-pol
 - Purple corresponds to land. Summer melt on the ice sheet periphery is the darker region between the white and purple regions. Refrozen melt-zone is bright white. Unmelted firn in central Greenland is brown and gold
 - (Texturing in the lower left portion of the melt zone is an artifact of the diurnal melt cycle due to using passes at different times of the day)
- Combined, the two scatterometers offer more discrimination capability than either alone

Backup Slides

Linear model for sigma-0 vs incidence angle

$$\sigma_{dB}^{0} = A + B(\theta_{i} - 40^{\circ})$$

A is the σ^{0} value at $\theta_{i} = 40^{\circ}$, and B is the slope of the fit

• Model appropriate for regions with no azimuth anisotropy

Backscatter Anisotropy

- Due to sastrugi and topography, some polar regions exhibit anisotropic backscatter response
 - Corrections methods have been developed and will be applied to Scatterometer Climate Record Pathfinder images

-20

Wilkes Land Example

ASCAT Local Time-of-Day Images

- ASCAT observes the poles many times each day
 - Local time of each pass varies in one of two general times
- Multiple measurements combined to make images
 - Diurnal features are averaged together, leading to loss in temporal resolution
- Solution: combine only measurements from similar local-time-of-day Local Time [min] = UTC [min] + 4 [min/deg] x longitude [deg]
- Two images each 24 hour period
 - Optionally combine several days separately for each local time of day

All-Day Images

Antarctic non-LTD A SIR

Arctic non-LTD A SIR

Antarctic non-LTD P SIR

Arctic non-LTD P SIR

 0
 -5
 -10
 -15
 -20
 -25
-30

Ω

TUCKOW, AN TUCKOW, AN TUCKOW, AND TUCKOW,

Morning LTOD Images

0

-5

-10

-15

-20

-25

-30

Antarctic LTD (morning) A SIR

Arctic LTD (midday) A SIR

	0
	-5
	-10
	-15
	-20
	-25
-	-30

Antarctic LTD (morning) P SIR

Arctic LTD (midday) P SIR

Evening LTOD Images

0

-5

-10

-15

-20

-25

-30

Antarctic LTD (evening) A SIR

Arctic LTD (evening) A SIR

 0
 -5
 -10
 -15
 -20
 -25
 -30

Antarctic LTD (evening) P SIR

Arctic LTD (evening) P SIR

- - 2500 - - 2000 - 1500 - 1000 - 500

ASCAT

2 Day LTOD Images

Antarctic LTD (evening) A SIR Antarctic LTD (evening) P SIR 0 2500 -5 2000 -10 1500 -15 -20 1000 -25 500 -30 0 Arctic LTD (evening) A SIR Arctic LTD (evening) P SIR 0 2500 -5 2000 -10 1500 -15 -20 1000 -25 500 -30 \sim LTD Time Axis 8 16 24 32 40 48 56 64 72 80 88 96 NHe Eve NHe Mid NHe Mid NHe Eve NHe Mid NHe Eve SHe Eve SHe Morn SHe Morn SHe Eve SHe Morn SHe Eve . L _ _ _ _ _ _ _

Incidence Angle Trimming

- SZR (25 km "egg") data incidence angles: 25°-65°
 Center beams restricted to 33.9°-55°
- Applied same restriction to SZF (slice) data
 - (Raw data covers broader incidence angle range)

Full SZF data

Trimmed incidence angles

"Tuning" SIR for ASCAT SZF

- Simulation used to select "optimum" SIR algorithm parameters
- Number of iterations
 - N_{its} = 35 (slices)
- Initial values
 - $-A_{init} = -15 \text{ dB}$
 - $B_{init} = -0.25 \text{ dB/deg}$
- B weighting
 - $-B_{weight} = 50$
- Incidence angle clipping
 - Fore/aft: 33.9° 60°
 - Mid: 33.9° 55°
- Median filtering optional

ASCAT & QuikSCAT Comparison A Images of the Amazon (sigma-0 in dB)

single day of data

ASCAT UHR Hurricane Observation Example

 Melor (rev 15348, 24 Oct 2009)

Case Study Rain Comparison

(light mist) are discarded to reduce noise

Raining versus non-raining

Overall Wind Performance

(averaged over hundred's of QuikSCAT/TRMM-PR collocations)

Wind-Only Raining

Spee

Bayes *Raining*

0.8

0.7

0.5

0.4

0.3

0.2

0.1

0.8

Bayes Non-Raining

SWR *Raining*

SWR Non-Raining

Resolution Enhancement

- The spatial response function and sampling define the effective resolution exploited by SIR reconstruction
 - Spatial overlap required
- AVE response is the weighted average of measurement responses covering each pixel
 - First iteration of the SIR algorithm

3 dB contour shown in black

AVE Response

Individual measurement spatial responses = product of antenna pattern and Doppler/range filtering