2010 International Ocean Vector Winds Meeting Barcelona, Spain May 18 – 20, 2010

The RSS WindSat Version 7 All-Weather Wind Vector Product

Thomas Meissner Lucrezia Ricciardulli Frank Wentz

Remote Sensing Systems www.remss.com

Outline

- I. Overview: RSS WindSat V7 Level 2B Products
- 2. Wind Speed Algorithm
 - Rain Free Wind Speeds
 - Global Wind Speeds Through Rain
 - Wind Speed in Hurricanes
 - Blended All-Weather Wind Speeds
 - Performance Analysis
- 3. Wind Direction Algorithm
- 4. Tropical and Extratropical Cyclones
- 5. Summary + Outlook

DMSP SSM/I, SSMIS 8 Total, 4 currently operating

TRMM TMI

AMSR-E, AMSR

WindSat

WindSat V7 Level 2B Products

	Resolution + Required Channels				
Product	Very Low C-band ≥ 6.8 GHz 50 km	Low X-band ≥ 10.7 GHz 32 km	Medium K-band ≥ 18.7 GHz 22 km	High ≥ 37.0 GHz 10 km	
SST	Yes	Yes	No	No	
Wind Speed No Rain	Yes	Yes	Yes	No	
Wind Speed Through Rain	Yes	Νο	Νο	Νο	
Wind Direction	Νο	Yes	Νο	Νο	
Water Vapor	Yes	Yes	Yes	No	
Tot Liquid Water	Yes	Yes	Yes	Yes	
Cloud Water	Yes	Yes	Yes	Yes	
Rain Rate	Νο	Νο	Νο	Yes	

Optimized swath width by combining for and aft looks at each band

Polarimetric Radiometer:

6.8 V H 10.7 V H +45 -45 LC RC 18.7 V H +45 -45 LC RC 23.8 V H 37.0 V H +45 -45 LC RC

Wind Speed Algorithms

- No-Rain Algorithm (X-band)
 - Physical algorithm
 - Based on RTM (emissivity model)
 - Trained with random wind speed distribution
- H-wind (Hurricane) Algorithm (C-band)
 - Statistical algorithm
 - Trained from collocation of WindSat TB with HRD (Hurricane Research Division) wind speeds
 - HRD winds need to be resampled to WindSat C/X band resolution
 - Not possible to resolve small scale effects.
- Global wind speed through rain algorithm (C-band)
 - Wind speed below 10 m/s: Statistical algorithm
 - Trained from collocation of WindSat TB with NCEP GDAS wind speeds
 - Wind speed above 15 m/s: Semi-statistical algorithm
 - Lack of ground truth at high winds
 - Atmosphere statistical ensemble
 - Calculate emissivity from RTM
 - Smooth transition between 10 m/s and 15 m/s

Winds in Rain: OVWST meeting Seattle 2008, Meissner + Wentz, TGRS 47(9), 2009, 3065 - 3083

No-Rain Wind Speeds

Global Wind Speeds in Rain

Hurricane Wind Speeds

Versus HRD wind speed

High Wind Speed Validation

- Validation for high wind speeds (> 25 m/s) is difficult
 - Few reliable ground truth observations
 - No buoys
 - QuikScat Ku 2001 high winds not valid (rain-free or rain)
 - Rain: All other radiometers invalid
 - NWP models unreliable in high winds
- Crucial question: Is emissivity model valid at high winds
 - Have assumed linear extrapolation
 - Does it saturate?
- H-wind algorithm has been trained + validated with HRD winds
 - Meissner + Wentz, IEEE TGRS 47(9), 2009, pp 3065 3083
 - Assume that HRD winds are correct in tropical cyclones after resampling to WindSAt resolution
 - H-wind algorithm does not use emissivity model
 - Global wind speed through rain algorithm uses emissivity model at high winds but no HRD winds
 - Cross validation: Global algorithm versus H-wind
 - Indirect validation of emissivity model at high winds
- WindSat high wind speeds will be used as basis for developing updated QuikSCAT geophysical model function
 - See presentation by L. Ricciardulli on Wednesday

RTM: Wind Induced Emissivity

WindSat TB over: SSM/I F13 V6 QuikSCAT Ku2001 HRD Challenge: Remove atmosphere (rain)

- best fit
- smoothed

Used for

- no-rain wind speed
- global wind speed through rain

Wind Speed Through Rain Global versus H-Wind

No indication that wind emissivity model saturates at high winds Consistency between H-wind and global wind through rain (RTM)

Greenland Tip Jet: Aircraft Measurement

- Good correlation
- Overall positive bias
 - Sea ice zone
 - Instrument bias

- Renfrew et al. QJRMS **135**, pp. 2046 2066 (2009)
- Aircraft observations taken during the Greenland Flow Distortion Experiment (GFDex), Feb and Mar 2007
- I 50 data points spread over 6 days with each data point equivalent to a 12 km spatial average
- Observations taken at 30-50 m above sea level and adjusted to standard 10m height

Figure 2. Locations of the observational database points. Data are from the low-level legs of flights B268 (triangles), B271 (stars), B274 (squares), B276 (diamonds), B277 (upturned triangles) and B278 (circles). SST (contours every 1K) and sea-ice concentration (shading every 20%) from the OSTIA dataset on the 5 March 2007 is also shown. This figure is available in colour online at www.interscience.wiley.com/journal/qj

All-Weather Wind Speed

- Blending between no-rain, global wind speed in rain and H-wind algorithms
- Takes place in L, T, W space
- Smooth transitions between zones

Wind Directions

Wind Directions

RMS [deg]	low winds (<6 m/s)	moderate winds (6-12 m/s)	high winds (> I 2 m/s)
no rain	40	16	н
light rain (< 3 mm/h)	52	27	18
moderate rain (3 – 8 mm/h)	61	44	35
heavy rain (> 8 mm/h)	65	52	49

WindSat versus CCMP Wind Direction Wind – Rain Performance Matrix

High Southern Latitude Storm 04/01/2006 14:30 UTC

Northern Latitude Extratropical Storm 17/02/2003 19:30 UTC

Hurricane Fabian 09/04/2003 10:30 UTC

Summary: All-Weather Winds

- Version 6: Rain areas needed to be blocked out
- Version 7: Rain areas will have wind speeds
 - C-band required: only WindSat , AMSR-E, GCOM
 - Possible with only X-band (TMI, GMI)
 - Degradation in Rain

