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Motivation

Surface turbulent fluxes from space will have much better spatial sampling
that the in situ observing system

e Better temporal sampling over most of the global oceans

Mid-level (85kPa to 70kPa) water vapor plays an important role in hurricane
and mid-latitude storm evolution

® In many cases, surface fluxes are non-negligible, but

e Surface fluxes are often more important for the conditioning of the
environment about the storm

Surface vector winds (or stress) and air/sea temperature differences are
Important players in getting the moisture out of the boundary-layer and into
the lower portion of the free atmosphere.

| will show how surface turbulent fluxes of energy (sensible and latent heat)
and moisture (evaporation) can be calculated from satellite observations
similar to those expected to be on GCOM-W?2




Flux Accuracies and Applications
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Flux Parameterizations
Stress

Sensible Heat Flux

Evaporation

Q=-pL,q.(ul~L,E Latent Heat Flux
o airdensity u, friction velocity
Cp drag coefficient 6, temperature scale factor
Cy heat transfer coefficient (analogous to friction velocity)
Ceg moisture transfer coefficient q. Mmoisture scale factor
U, mean surface motion T mean air temperature
U,, Wind speed at height of 10m g  mean specific humidity
L, latent heat of vaporization C, heat capacity

Traditionally, scatterometer winds are tuned to equivalent neutral winds
(Ross et al. 1985), which are directly translatable to friction velocity — not
stress




Monthly LHF Differences Due to Wave-Induced Shear
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Flux Parameterizations — Further Complications
C,=c, Cq Wherecy =Cp
Cc=c.Cy
* All wave related variability can be included in Cy and U,
* ¢, and c, depend only on boundary-layer stratification
T = p U, |u, = p Cpy(Uygen — Ug) [(Usgen — Us)l Stress
H=-pC, 0 |u]=pCjcpcy(Tyo—Tg) (U —Uy)| Sensible
E=-pd. |ul = 4cJcd(bs — 6 I(Uso = Uy Evaporation
Q=-pL,0q.|ul=L,E Latent

N

* So we want to be able to accurately estimate
° TlO - Ts
° J10 = U5




Example Retrievals of 10m Air Temperature
Jackson and Wick Ta Validation 1999
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Comparison With The Latest Technique

I:l Frrrrrinri [ | L I O | [ T rrrnri [ Trrrrrrri [ LI | |_.
- AMSU/SST LR Bias = -0.07 °C ]
20 AMSU/SSTLRRMS = 167 °C . 4
" SSMI/SST NN Bias = -0.44 "C ]
C SSMIVSST NN RMS = 1.82 °C ]
A -
?' [ ]
“or 1 :
— - i
s | :
= L 1 -
w 10r 7
[ #] L .
A RO, E
[ .y e AMSU/SST LA 1Jackson and Wick
- s SSMISSTNN - JRoberts et al.
=10 ra v e g b s v ey e bev s e g v e bev e s e by
-10 ] 10 20 a0

ICOADS Ta ("C)




Satellite Qa (g/kg)
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Validation of Air/Sea Temperature Differences

Baily Average TS-TA, degC, 2004/01/27
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e Roberts et al. (2010) retrieval technique for T,, and qq.

e Comparison to buoy observations (circles in the Gulf of
Mexico)
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Warm Core Seclusion Air/Sea Differences
e Iemperature R
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Example LHF Retrieval: Warm Core Seclusion

e Black line is the track from e Lack of retrieval in areas
Ryan Maue’s data set with too much rain
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Conclusions

e Preliminary results are quite impressive
e Concerns
e Need for more careful calibration & intercalibration
e Further reduction of biases
® Non-linear processes converting random errors to biases??
e Particularly for low temperatures and high winds
e Sampling — missing some of the really big events
e Accuracy of winds (or stress) for high wind speeds
e Quality assessment flags
e Preliminary results are quite impressive

e Retrieval of stress from an active instrument should improve retrievals of
temperature and humidity.

e High resolution surface winds should be helpful in modeling exchange
between the boundary-layer and the lower free atmosphere
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LLHF Differences Due to Wave-Induced Shear
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e Animation of 6 hourly change in fluxes:

e Case with waves minus case with U, =0
® 6 hour time step
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Submonthly Contribution to Average LHF

e L is determined through a bulk formula.
L=pL,CyU(qy~q)
e \Where the overbar indicates a monthly average
e There is considerable controversy about that accuracy of this averaging

e A more accurate approach is to calculate the flux at each time step then
average these fluxes: L~ pI C,U(q,, —q)

e If we apply Reynolds averaging this equation becomes

e If we assume density variations are not important, this equation becomes

LApL C,UG ~ D PL(Co U'(q — i) +U Cy (4~ dlp)+(q —q,2) CiU")

e Following examples of monthly biases are based on ECMWF reanalysis.
e Plots bias from using monthly averaged flux input data
e They do not include wave information

USCLIVAR/SeaFl




January

Bias in Monthly
Latent Heat Flux

(1) latent heat flux
determined from 6
hourly data and
(2) latent heat flux
determined from
monthly averaged
input

Monthly climatology
computed for 1978-
2001

Figures show: (1)
minus (2)
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Observed (x) and I\/Iodeled (y) Friction Veloc:|ty (U.)
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Wave Motions Modify Ug. and
Hence chanae the Wind Shear

Direction of wave propagation ———
3
Surface —— v et e’/

Uoy = 7H¢ /' T, P

Wind Wind
Decreased Vertical Shear Increased Vertical Shear

e For wind driven waves and common wave ages
e this is qualitatively similar to the HEXQOS results, and
e qualtitatively similar to Taylor and Yelland (2001)
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Percentage Change in Surface Relative Winds

20 Example for a 00Z Comparison

s Ti =25 e The percentage change in surface
¥ relative winds is roughly

a_— proportional to the change in
0N energy fluxes.

05 e The percentage change squared is

roughly proportional to changes in
stress.

e The drag coefficient also changes
by about half this percentage.
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From Kara et al. (2007, GRL)
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ASCAT vs. QUIkKSCAT Daily Coverage
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To What Does a Scatterometer Respond?

e |t can be further improved in terms of surface relative wind vectors:
T=pC, |U10 _[]g%|(II10 _U.sy%) L= P I—V CE (qu - quC) |U10 - USfC|

® Does a scatterometer respond to U,, or to U, — U, Or stress?

e Cornillon and Park (2001, GRL), Kelly et al. (2001, GRL), and Chelton et al.
(2004, Science) showed that scatterometer winds were relative to surface
currents.

e Bentamy et al. (2001, JTech) indicate there is also a dependence on wave
characteristics.

e The drag coefficient can be modeled as depending on waves

e Bourassa (2006, WIT Press) showed that wave dependency can be parameterized
as a change in U,. This greatly simplifies the drag coefficient

e Considering waves reduces the residual between scatterometer equivalent
neutral winds and equivalent neutral winds calculated from buoy
observations

e A p-95dependency is found in the residual between scatterometer equivalent neutral
winds and equivalent neutral winds calculated from buoy observations

USCLIVAR/SeaFlux
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