Applications of OVW-Derived Surface Pressures in Tropical Cyclones Ralph Foster, APL/U of WA

Jerome Patoux, R.A. Brown, Atmos. Sci., U of WA

SAR TC Working Group:

Hans C. Graber (C*STARS/UM), Chris Wackerman (GD), Jochen Horstmann (NURC), Michael Caruso (C*STARS/UM), Roland Romeiser(RSMAS/UM), Ralph Foster (APL/UW), Jerome Patoux (UW)

Five Working Group Meetings:

1.10 & 11 February 2009 – Miami, Florida

2.31 May & 1 June 2009 – LaSpezia, Italy

3.28 & 29 October 2009 – Ypsilanti, Michigan

4. March, 2010 – CSTARS Miami 5. 14-17 May, 2010, Barcelona

Goal: km-scale Surface winds & Sea-surface Pressure; km \rightarrow O(200 m) scale ocean surface waves from SAR imagery of TCs

CSA/CSTARS/NOAA AO: ~160 RadarSAT-1 SAR images WPAC/ATL

Objectives

- SAR TC surface winds above 30 m s⁻¹ limited by
 - In situ cal/val data
 - Geophysical model functions
- Wind directions from rolls/streaks
 - Selection of directions
 - Interpolation between identifiable features
 - GD: Power Law vs. parameterized Spiral
 - NURC: dir. from O(100 m) to O(multi-km) (mainly 400 m)
 - No fill-in between WVC
 - Eye location
- Assume barometers more reliable than anemometers in TCs
 - Alternate source of surface wind Cal/Val data?
 - Can we use SLP to extrapolate surface winds into core?

$$\sigma_0 = \sigma_0 (U_{10}^N, \theta, \phi)$$

Yagi

Yagi

SLP-filtered U_{10}^{N} (m s⁻¹) with SLP-filt. Streamlines

NURC

Min SLP (mb)

	GD	GD	GD	GD	Best Track	Best Track	NURC
	Case1	Case 2	Case 3	Case 4	JTWC	JMA	(c5l)
	(fp)	(fs)	(SS)	(fp5a)	(~+/-6 mb)	(~+/- 6mb)	
Ewiniar	947.4	947.9	945.1	941.5	944	950	
Fitow	963.4	963.1	960.5	961.2	970	970	
Kajiki	940.7	940.7	937.6	921.1	937	945	
Krosa	907.5	906.3	899.7	902.1	927	927	
Manyi	932.5	931.1	928.8	919.6	931	932	
Matsa	954.8	953.2	952.0	942.1			
Mawar	957.7	957.8	954.9	952.2	944	950	
Meari	926.2	925.6	922.3	912.4			
Nockten	945.7	943.6	948.4	940.6	933	945	
Usagi	941.4	939.5	937.8	932.5	939	945	
Yagi	915.7	915.4	912.3	895.8	898	912	928

Katrina 28 Aug 2005, 23:50

NOAA N43 P-3 23:16

Krosa: GD direction interpolation; CWaR model Function

Conclusions

- Final quality of SLP fields is limited by quality of input SAR winds
 - Can SLP retrieval be incorporated into wind retrieval?
 - Methodology for choosing SAR wind direction
- However, if enough of the inner core winds are "good", first cut application can estimate min(SLP) relatively well compared to Dvorak methods in WPAC

What's Next

- Investigate incorporating SLP code into wind retrieval methodology at NURC (starting next week)
- Quantitative evaluation of SLP-filter winds
 ATL cases w/ in situ data
- Incorporate more "TCBL" dynamics into PBL model
- Future: Use SAR surface waves to find Cd?

Extra Slides

UW: Two Goals

- Assess storm intensity from SAR winds provided by General Dynamics (Wackerman) and NURC (Horstmann)
 - Min(SLP) is a useful measure of overall storm intensity
 - Integrated scene-wide evaluation of SAR wind retrievals
 - "Sanity" check on winds
 - Winds \rightarrow SLP \rightarrow Pressure Drop
- Research goal: use pressure to correct/improve high wind retrievals
 - Smooth modifications to match SAR bulk pressure gradients (BPG) with observed BPG
 - In progress, currently testing cost function weights

TCBL Core Dominated by Nonlinear Dynamics

- Need simple TCBL models that include nonlinear effects
 - (1) "gradient wind" correction (Seems to work quite well)
 - (2) Nonlinear vortex model (Foster, BLM, 2009)
 - Vertical transport of inflow momentum plays a key role in TC BL jet strength
- TCBL roll vortices & streaks
 - Nonlocal fluxes: transports jet momentum into surface
 - Wind directions (relative orientation between SAR linear feature and wind direction is subtle, depends on TCBL mean flow, which depends on TC quadrant)
 - Foster JAS, 2005; Foster JFM, 1997

Progress

- Amazing computer issues (incompatible compilers, link libraries, OS)
 - Mostly now solved
- Assessing calibration
- Tuning cost function weights & gradient wind parameters

Plans

- Use SLP to aid in wind direction selection
- Parallel effort using TCBL model 2, extrapolate towards center, re-calculate surface winds
- Examine modified surface winds & orientation relative to SAR streaks

Six-year BPG comparison (51001 & 48001)

Six-year comparison all 52 possible NDBC buoy pairs

QuickSCAT

How Can We Evaluate & Improve SAR High Wind Retrievals?

- Surface pressure is easier to measure than surface wind (buoys, drop sondes)
- Simple, but nonlinear, TCBL model relates SAR surface winds to pressure gradients & hence to bulk pressure differences within SAR image.
- Optimization procedure to find minimum SAR wind corrections to match observed bulk pressure gradients (and surface wind obs.)

$$J = \sum_{n=1}^{N} \left(\Delta P_n^S - \Delta P_n^O \right)^2 + w_1 \sum_{m=1}^{M} \left(S_m - S_0 \right)^2 + w_2 \sum_{l=1}^{L} \left| \mathbf{u}_l^i - \mathbf{u}_l^{i-1} \right|^2$$

SLP obs SFMR obs Smoothness

 SLP is an integrated property, hence local pressure data provides information over wide region of SAR image – NOT point-wise Cal/Val

TCBL Core Dominated by Nonlinear Dynamics

- Need simple TCBL models that include nonlinear effects
 - (1) "gradient wind" correction
 - (2) Nonlinear vortex model (Foster, *BLM*, 2009)
 - Vertical transport of inflow momentum plays a key role in TC BL jet strength
 - (3) General nonlinear similarity (may be too slow)
- TCBL roll vortices & streaks
 - Nonlocal fluxes: transports jet momentum into surface
 - Wind directions
 - Foster JAS, 2005; Foster JFM, 1997

Axisymmetric, Balanced Vortex

$$\frac{\partial U}{\partial r} + \frac{U}{r} + \frac{\partial W}{\partial z} = 0$$

$$U\frac{\partial U}{\partial r} - \frac{V^2}{r} + W\frac{\partial U}{\partial z} - fV = \frac{-1}{\rho_0}\frac{\partial P}{\partial r} + \frac{\partial}{\partial z}\left(K\frac{\partial U}{\partial z}\right)$$

$$U\frac{\partial V}{\partial r} + \frac{UV}{r} + W\frac{\partial V}{\partial z} + fU = \frac{\partial}{\partial z}\left(K\frac{\partial V}{\partial z}\right)$$

$$\frac{V_g^2}{r} + fV_g = \frac{1}{\rho_0} \frac{\partial P}{\partial r}$$

PBL Dynamics

$$\operatorname{Re} \frac{h}{L} \begin{bmatrix} UU_{x} + VU_{y} + WU_{z} \end{bmatrix} - a \left(V - V_{g} \right) = \frac{\partial}{\partial z} \left(K \frac{\partial U}{\partial z} \right)$$

$$\operatorname{Re} = \frac{U_{10}^{N} h}{K_{m}} \qquad \qquad \delta = \sqrt{2K_{M}/I}$$

$$Ro = \frac{U_{10}^{N}}{fh} \qquad \qquad I = \sqrt{\left(f + \frac{2V_{grad}}{r}\right)\left(f + \frac{V_{grad}}{r} + \frac{\partial V_{grad}}{\partial r}\right)}$$

$$I \Box \quad f \to \delta \Box \quad \delta_{E}$$

$$a = \frac{\operatorname{Re}}{\operatorname{Ro}} = O(1) \qquad \varepsilon = \operatorname{Re}\frac{h}{L} < 1$$

GD Winds

- Case 1 (fp): Linear features for directions, power-law interpolate directions only. CWaR model function.
- Case 2 (fs): Linear features for directions. Interpolate directions only with spiral model. CWaR model function.
- Case 3 (ss): Fit spiral model to linear features, use spiral model as direction. CWaR model function (same as March, 2010 Miami SWG mtg.)
- Case 4 (fp5a): Linear features for direction, power-law interpolation of directions only. CMOD5 (α =0.6). Missing data where SAR σ_0 exceeds CMOD5.

Krosa

Krosa

Manyi

Manyi

