

Julia Figa-Saldaña

Acknowledgments

ASCAT teams at:

EUMETSAT: Craig Anderson, Hans Bonekamp, Leonid Butenko, Colin Duff, Jens Lerch, Christelle Ponsard, Arthur de Smet, Julian Wilson

TU-Wien: Zoltan Bartalis, Stephan Hassenauer, Vahid Naeimi, Wolfgang Wagner

KNMI: Maria Belmonte, Ad Stoffelen, Anton Verhoef, Jeroen Verspeek, Jur Vogelzang

Met.no: Lars-Anders Breivik, Steinar Eastwood, Thomas Lavergne

Outline

Services overview
Instrument
Processing
Re-processing
Archiving and Dissemination
Outreach

News and developments since Boulder 2009 Current areas of work and future plans

ASCAT services in Europe - overview

ASCAT products – where do I find what

Parameter	Description	EUMETCast	NOAA	GTS	FTP	EUM Archive	Other archive
		3-min a	long track	product le	ength		
s0	swath grid 25 (12.5) km	EPS native, BUFR	EPS native	BUFR	-	EPS native/HDF5 (ground station dumps)	-
s0	Full resolution, 256 samples along each of 6 beams	EPS native	EPS native			EPS native/HDF5 (ground station dumps)	
s0 + wind	swath grid 25 (12.5) km	BUFR	1	BUFR	BUFR	BUFR (orbits from/to ascending crossing)	BUFR (KNMI)
wind	swath grid 25 (12.5) km			0.00	netCDF	netCDF (orbits from/to ascending crossing)	netCDF (orbits from/to ascending crossing) (KNMI, PODAAC)
soil moist.	swath grid 25 (12.5) km	BUFR		BUFR	- //	EPS native/HDF5 (ground station dumps)	•
s0 + wind + soil moist.	swath grid 25 (12.5) km	BUFR	- 4	BUFR	-	BUFR (orbits from/to ascending crossing)	-
		Grided pi	oducts (m	ulti-missic	on SSM/I + AS	CAT+ AMSR-E)	
Sea ice edge, type	PolSter grids 10 km	GRIB	-		GRIB, HDF netCDF	GRIB	GRIB, HDF, netCDF (Met.no)
Sea ice drift	PolSter grids 62.5 km	-	-	-	netCDF	-	netCDF (Met.no)

EUMETSAT

Instrument status

All functional and trending indicators are fine. All instrument components still have full redundancy.

Power consumption very stable, drops are traced to instrument switch-off events or other payload events affecting the temperature in the environment of the ASCAT (i.e., IASI heater refuse anomalies)

On 18/02/10, spontaneous ASCAT switch-off over North polar area – 6 hours measurement interruption

internal unit temperature

antenna temperature

voltages

Sigma0

Last tuning of the calibration on 09/12/08 as a reference to start adapting the existing ERS-based Level 2 models (winds, soil moisture and ice) to ASCAT data

Implementation of dynamic (orbit-based) Power-to-s0 normalisation on 10/09/09 and start of non-frozen eccentricity orbit phase on 17/09/09

New transponder calibration campaign 08/03 - 06/05

Impact of implementation of dynamic normalisation

Our observed impact of the dynamic vs. static normalisation factors was of about 0.005 dB

Manoeuvre produced a jump of 0.002 dB and started their expected oscillation, of the same order of magnitude

But ocean calibration reports a sudden bias of near 0.1 dB for the mid left beam, coinciding with the events above. So far we have not found the root cause of this sudden calibration change

sigma0 spatial averaging implementation error for the 12.5 km product

OVWST Meeting, 18-20 May 2010, Barcelona

sigma0 spatial averaging implementation error for the 12.5 km product

ERS/ASCAT σ0 cross-calibration – incidence angle dependent bias

Use of ERS-based geophysical models requires σ0 bias corrections

- Red σ0 bias correction derived for continuity of ocean winds record
- Blue alternative σ0 bias correction achieving a better consistency of soil moisture record

The red curve is currently used for the retrieval of both ASCAT L2 operational products

ERS-ASCAT backscatter and soil moisture comparisons - first results, June 2009

Courtesy of IPF TU-Wien (http://www.ipf.tuwien.ac.at/radar/ascat_ers_intercomparison.pdf)

Winds

Development of ASCAT-based C-band wind GMF

On-going evaluation of spatial resolution issues

ASCAT coastal product – demonstration service available for evaluation in near real time

Royal Netherlands Meteorological Institute

Soil moisture

New soil moisture parameter database, based on an ASCATonly soil moisture time series was just delivered

Vienna University of Technology

Sea ice

Sea ice edge and type

Daily maps every 6 h, on a 10 km polar stereographic grid

Bayesian approach combining SSM/I and ASCAT data to obtain an optimal estimation, its probability and uncertainty

Ice motion vectors with time span of 48 h, on a 62.5 km polar stereographic grid

Advanced cross-correlation method on pairs of satellite images from SSM/I, AMSR-E and ASCAT

Meteorological Institute of Norway

OVWST Meeting, 18-20 May 2010, Barcelona

Reprocessing

Phase 1 of ASCAT sigma0 and soil moisture reprocessing completed and delivered on 07/12/09

http://www.eumetsat.int/Home/Main/News/OperationalNews/715844?l=en

Consistent data records of ASCAT Sigma0 and soil moisture since June 2007 until present (impact of the mid left beam calibration change in Sept 2009 to be determined)

Winds not reprocessed, because they are consistent from beginning of mission

Phase 2 reprocessing planned for sigma0, winds and soil moisture back to January 2007. When sigma0 calibration confirmed by second transponder campaign and new ASCAT-based GMFs available for winds and soil moisture

Archiving and dissemination

All ASCAT wind products now available in all EUMETCast beams

ASCAT soil moisture now available in EUMETCast Europe and Africa

EARS ASCAT winds are now available on the GTS

ASCAT winds **netCDF products** now available in near real time (ftp), EUMETSAT archive and PODAAC

Outreach

EUMETSAT and NOAA co-organised a training workshop on the use of scatterometer and altimeter wind and wave data in marine forecasting – see poster

Looking at wind trends — what is the scatterometer point of view?

Useful links

ASCAT Products guide

http://www.eumetsat.int/Home/Main/Publications/Technical_and_Scientific_Documentation/EPS_Product_Guides/index.htm

EUMETSAT User Services

www.eumetsat.int

Contact directly the ASCAT team

ascat_calval@eumetsat.int

Ocean and Sea Ice SAF page

www.osi-saf.org

The scatterometer page at KNMI

www.knmi.nl/scatterometer

The scatterometer soil moisture at TUWien

http://www.ipf.tuwien.ac.at/radar/

The sea ice team at Met.no

http://saf.met.no/

EARS winds

Addition of AHRPT data to the coverage Addition of soil moisture values

Current coverage

Coverage of individual AHRPT stations

EUMETSAT archive user interface

Slide: 22

METOP-A Manouvre history

2006/10/21 18:58:08	OOP	GEO	performed by ESOC
2006/10/22 06:30:43	IP	GEO	double IP, performed by ESOC
2006/10/22 07:20:35	IP	GEO	double IP, performed by ESOC
2006/11/02 15:06:32	IP	YSM	
2007/04/19 14:05:56	IP	YSM	double IP
2007/04/19 14:56:40	IP	YSM	double IP
2007/07/12 14:48:18	IP	YSM	
2008/01/31 14:38:03	IP	YSM	
2008/04/08 13:26:21	OOP	GEO	
2008/04/09 03:48:39	OOP	GEO	
2008/04/24 14:46:31	IP	YSM	double IP
2008/04/09 03:48:39	IP	YSM	double IP
2008/10/23 14:30:02	OOP	GEO	
2008/10/30 14:11:05	IP	YSM	double IP
2008/10/30 15:01:42	IP	YSM	double IP
2009/01/22 14:11:17	IP	YSM	
2009/09/17 14:17:41	OOP	GEO	
2009/12/10 15:31:21	IP	YSM	

L2 Soil moisture – status

Product definition

Level 2: Surface soil moisture index (%) in orbit geometry, tailored for NWP assimilation

(Level 3 value-added products are also planned in partnership with the H-SAF)

Service status

Operational since 10/12/08, a tuning of the retrieval for the left beam was introduced at the end of 04/09 Reprocessed data set available covering 2007-2008 available

Next steps

Cross-calibration with ERS scatterometer and removal of s0 bias corrections will be addressed

EARS ASCAT L2 winds - overview and status

Data feed from global data dump: 14 Metop dumps/day. Last 30 minutes of ASCAT extracted for further L1b + L2 processing

Timeliness: 40-45 min for data over equator, 15 minutes from sensing for data over high latitudes!

Service operational since 14/12/08 and EARS SCAT demonstration service runs in parallel

On going work to adapt the current system to dynamic poser-to-sigma0 normalisation, to process available AHRPT data, and to produce L2 soil moisture as well

KSAT MEOS EUMETCast uplink server Tromsoe PPN ASCAT L 2 product Monitoring **EARS Control** ASCAT L 2 wind and raw data processor (KNMI) pre- processing ASCAT L ASCAT L 1 product ASCATLO product **VPN** b prod & qua monitoring ASCAT L 1b processor **EARS**

Slide: 25

EUMETSAT

OVWST Meeting, 18-20 May 2010, Barcelona

Where can you receive EUMETCast data today?

Multi-service dissemination system based on standard Digital Video Broadcast (DVB) technology. It uses commercial telecommunication geostationary satellites to multicast files (data and products) to a wide user community.

Part of a bigger picture: **GEONETCast**

http://www.eumetsat.int/Home/Main/What_We_Do/Technical_Cooperations/GEONETCast/index.htm

